Mechanism of internal thermal runaway propagation in blade batteries

被引:0
|
作者
Xuning Feng [1 ]
Fangshu Zhang [1 ]
Wensheng Huang [1 ]
Yong Peng [1 ]
Chengshan Xu [1 ]
Minggao Ouyang [1 ]
机构
[1] School of Vehicle and Mobility, Tsinghua University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s-1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%–17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 ℃. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage Ⅲ, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
引用
收藏
页码:184 / 194
页数:11
相关论文
共 50 条
  • [31] Effect of flame heating on thermal runaway propagation of lithium-ion batteries in confined space
    Zhang, Yue
    Zhao, Hengle
    Wang, Gongquan
    Gao, Xinzeng
    Ping, Ping
    Kong, Depeng
    Yin, Xiaokang
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [32] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Tao, Changfa
    Li, Guangyu
    Zhao, Jianbo
    Chen, Guang
    Wang, Zhigang
    Qian, Yejian
    Cheng, Xiaozhang
    Liu, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1523 - 1532
  • [33] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [34] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Zhu, Yu
    Wang, Zhirong
    Bian, Huan
    Wang, Junling
    Bai, Wei
    Gao, Tianfeng
    Bai, Jinlong
    Zhou, Yuxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13699 - 13710
  • [35] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [36] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Yu Zhu
    Zhirong Wang
    Huan Bian
    Junling Wang
    Wei Bai
    Tianfeng Gao
    Jinlong Bai
    Yuxin Zhou
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13699 - 13710
  • [37] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [38] Influence of inhomogeneous state of charge distributions on thermal runaway propagation in lithium-ion batteries
    Theiler, Michael
    Baumann, Alexander
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [39] Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement
    He, Dan
    Wang, Jialin
    Peng, Yanjun
    Li, Baofeng
    Feng, Chang
    Shen, Lin
    Ma, Shouxiao
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [40] Dynamic simulation on the deformation of the battery module under thermal runaway propagation based on internal pressure
    Dong, Wenyu
    Xu, Chengshan
    Huang, Wensheng
    Peng, Yong
    Zhang, Mengqi
    Wang, Huaibin
    Jin, Changyong
    Fan, Yuezhen
    Feng, Xuning
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 195