Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases

被引:0
|
作者
Jun Sun [1 ]
Yu Zhuang [2 ]
Ai-guo Xing [2 ]
机构
[1] Guizhou Geology and Mineral Engineering Construction Co., Ltd
[2] State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
P642.22 [滑坡];
学科分类号
0837 ;
摘要
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration) can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
引用
收藏
页码:264 / 276
页数:13
相关论文
共 50 条
  • [41] A practical prediction method for grinding accuracy based on multi-source data fusion in manufacturing
    Haipeng Wu
    Zhihang Li
    Qian Tang
    Penghui Zhang
    Dong Xia
    Lianchang Zhao
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 1407 - 1417
  • [42] Prediction of Rice Yield Based on Multi-Source Data and Hybrid LSSVM Algorithms in China
    Zhao, Long
    Qing, Shunhao
    Wang, Fei
    Wang, Hui
    Ma, Hao
    Shi, Yi
    Cui, Ningbo
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2023, 17 (04) : 693 - 713
  • [43] Cross-project software defect prediction based on multi-source data sets
    Huang Junfu
    Wang Yawen
    Gong Yunzhan
    Jin Dahai
    The Journal of China Universities of Posts and Telecommunications, 2021, 28 (04) : 75 - 87
  • [44] Travel Time Prediction of Main Transit Line Based on Multi-source Data Fusion
    Liu Y.
    Guo X.-C.
    Zhou R.-X.
    Lv F.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (04): : 124 - 129and148
  • [45] A Gene-disease Association Prediction Algorithm Based on Multi-source Data Fusion
    Wang F.
    International Journal Bioautomation, 2021, 26 (01) : 19 - 36
  • [46] A Spatio-Temporal Prediction Method of Traffic Flow Based on Multi-Source Data
    Hu J.
    Gong Y.
    Cai S.
    Huang T.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (11): : 1662 - 1672
  • [47] Traffic Accident Risk Prediction of Tunnel Based on Multi-Source Heterogeneous Data Fusion
    Wang, Yong
    Liu, Tongbin
    Lu, Yong
    Wan, Huawen
    Huang, Peng
    Deng, Fangming
    IEEE ACCESS, 2024, 12 : 18694 - 18702
  • [48] Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China
    Han, Jichong
    Zhang, Zhao
    Cao, Juan
    Luo, Yuchuan
    Zhang, Liangliang
    Li, Ziyue
    Zhang, Jing
    REMOTE SENSING, 2020, 12 (02)
  • [49] An intelligent prediction method of surface residual stresses based on multi-source heterogeneous data
    Wang, Zehua
    Wang, Sibao
    Wang, Shilong
    Zhao, Zengya
    Tian, Zhifeng
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 36 (1) : 441 - 457
  • [50] Surface Roughness Prediction Method of CNC Milling Based on Multi-source Heterogeneous Data
    Li C.
    Long Y.
    Cui J.
    Zhao X.
    Zhao D.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (03): : 318 - 328