基于CEEMDAN与LSTM-Attention的股市预测模型

被引:2
|
作者
孙晨宇 [1 ]
张树东 [1 ]
机构
[1] 首都师范大学信息工程学院
关键词
LSTM; 经验模态分解; Seq2Seq模型; Attention机制; 股票预测;
D O I
暂无
中图分类号
F832.51 []; F224 [经济数学方法];
学科分类号
020204 ; 0701 ; 070104 ; 1201 ;
摘要
具有时序特征的金融股票数据有非线性、非平稳和复杂动态的特点,对预测模型提出了挑战。提出一种基于自适应噪声完备集合经验模态分解的LSTM-Attention模型。通过重组后的高频、中频和低频分量,构建更为细化的LSTM-Attention模型,再通过加总合成获得目标预测值。实验结果分析表明,该模型在平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)和决定系数四个指标上均优于现有模型,有效提升了模型预测的准确率,同时减少了计算开销。
引用
收藏
页码:119 / 125 +146
页数:8
相关论文
共 14 条
  • [1] Analysis on block chain financial transaction under artificial neural network of deep learning.[J].Wenyou Gao;Chang Su.Journal of Computational and Applied Mathematics.2020, prepublish
  • [2] Adaptive stock trading strategies with deep reinforcement learning methods.[J].Xing Wu;Haolei Chen;Jianjia Wang;Luigi Troiano;Vincenzo Loia;Hamido Fujita.Information Sciences.2020,
  • [3] Abstractive social media text summarization using selective reinforced Seq2Seq attention model.[J].Zeyu Liang;Junping Du;Chaoyang Li.Neurocomputing.2020, prepublish
  • [4] Neural Networks in Narrow Stock Markets
    Alfonso, Gerardo
    Ramirez, Daniel R.
    [J]. SYMMETRY-BASEL, 2020, 12 (08):
  • [5] Predicting the Trend of Stock Market Index Using the Hybrid Neural Network Based on Multiple Time Scale Feature Learning
    Hao, Yaping
    Gao, Qiang
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [6] A Sustainable Quantitative Stock Selection Strategy Based on Dynamic Factor Adjustment
    Fu, Yi
    Cao, Shuai
    Pang, Tao
    [J]. SUSTAINABILITY, 2020, 12 (10)
  • [7] On the forecasting of high-frequency financial time series based on ARIMA model improved by deep learning
    Li, Zhenwei
    Han, Jing
    Song, Yuping
    [J]. JOURNAL OF FORECASTING, 2020, 39 (07) : 1081 - 1097
  • [8] Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices.[J].Feng Zhou;Qun Zhang;Didier Sornette;Liu Jiang.Applied Soft Computing Journal.2019,
  • [9] Financial time series forecasting model based on CEEMDAN and LSTM.[J].Jian Cao;Zhi Li;Jian Li.Physica A: Statistical Mechanics and its Applications.2018,
  • [10] Deep learning-based feature engineering for stock price movement prediction.[J].Wen Long;Zhichen Lu;Lingxiao Cui.Knowledge-Based Systems.2018,