Jackknife Model Averaging for Composite Quantile Regression

被引:0
|
作者
YOU Kang [1 ]
WANG Miaomiao [2 ]
ZOU Guohua [1 ]
机构
[1] School of Mathematical Sciences, Capital Normal University
[2] School of Chinese Materia Medica, Beijing University of Chinese Medicine
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the authors propose a frequentist model averaging method for composite quantile regression with diverging number of parameters. Different from the traditional model averaging for quantile regression which considers only a single quantile, the proposed model averaging estimator is based on multiple quantiles. The well-known delete-one cross-validation or jackknife approach is applied to estimate the model weights. The resultant jackknife model averaging estimator is shown to be asymptotically optimal in terms of minimizing the out-of-sample composite final prediction error.Simulation studies are conducted to demonstrate the finite sample performance of the new model averaging estimator. The proposed method is also applied to the analysis of the stock returns data and the wage data.
引用
收藏
页码:1604 / 1637
页数:34
相关论文
共 50 条
  • [41] Semiparametric Hierarchical Composite Quantile Regression
    Chen, Yanliang
    Tang, Man-Lai
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (05) : 996 - 1012
  • [42] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    [J]. Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [43] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [44] Composite quantile regression for massive datasets
    Jiang, Rong
    Hu, Xueping
    Yu, Keming
    Qian, Weimin
    [J]. STATISTICS, 2018, 52 (05) : 980 - 1004
  • [45] A note on the efficiency of composite quantile regression
    Zhao, Kaifeng
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1334 - 1341
  • [46] Composite Hierachical Linear Quantile Regression
    Yan-liang CHEN
    Mao-zai TIAN
    Ke-ming YU
    Jian-xin PAN
    [J]. Acta Mathematicae Applicatae Sinica, 2014, (01) : 49 - 64
  • [47] Composite hierachical linear quantile regression
    Yan-liang Chen
    Mao-zai Tian
    Ke-ming Yu
    Jian-xin Pan
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 49 - 64
  • [48] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64
  • [49] Composite quantile regression for correlated data
    Zhao, Weihua
    Lian, Heng
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 15 - 33
  • [50] Regularized quantile regression averaging for probabilistic electricity price forecasting
    Uniejewski, Bartosz
    Weron, Rafal
    [J]. ENERGY ECONOMICS, 2021, 95