High-dimensional robust inference for censored linear models

被引:0
|
作者
Jiayu Huang [1 ]
Yuanshan Wu [2 ]
机构
[1] School of Mathematics and Statistics, Wuhan University
[2] School of Statistics and Mathematics, Zhongnan University of Economics and Law
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Due to the direct statistical interpretation, censored linear regression offers a valuable complement to the Cox proportional hazards regression in survival analysis. We propose a rank-based high-dimensional inference for censored linear regression without imposing any moment condition on the model error. We develop a theory of the high-dimensional U-statistic, circumvent challenges stemming from the non-smoothness of the loss function, and establish the convergence rate of the regularized estimator and the asymptotic normality of the resulting de-biased estimator as well as the consistency of the asymptotic variance estimation. As censoring can be viewed as a way of trimming, it strengthens the robustness of the rank-based high-dimensional inference,particularly for the heavy-tailed model error or the outlier in the presence of the response. We evaluate the finite-sample performance of the proposed method via extensive simulation studies and demonstrate its utility by applying it to a subcohort study from The Cancer Genome Atlas(TCGA).
引用
收藏
页码:891 / 918
页数:28
相关论文
共 50 条
  • [1] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    [J]. Science China Mathematics, 2024, 67 : 891 - 918
  • [2] High-dimensional robust inference for censored linear models
    Huang, Jiayu
    Wu, Yuanshan
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 891 - 918
  • [3] Robust Inference for High-Dimensional Linear Models via Residual Randomization
    Wang, Y. Samuel
    Lee, Si Kai
    Toulis, Panos
    Kolar, Mladen
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7818 - 7828
  • [4] Simultaneous Inference for High-Dimensional Linear Models
    Zhang, Xianyang
    Cheng, Guang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 757 - 768
  • [5] High-dimensional inference in misspecified linear models
    Buehlmann, Peter
    van de Geer, Sara
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1449 - 1473
  • [6] Robust inference for high-dimensional single index models
    Han, Dongxiao
    Han, Miao
    Huang, Jian
    Lin, Yuanyuan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1590 - 1615
  • [7] Spatially relaxed inference on high-dimensional linear models
    Jérôme-Alexis Chevalier
    Tuan-Binh Nguyen
    Bertrand Thirion
    Joseph Salmon
    [J]. Statistics and Computing, 2022, 32
  • [8] Spatially relaxed inference on high-dimensional linear models
    Chevalier, Jerome-Alexis
    Nguyen, Tuan-Binh
    Thirion, Bertrand
    Salmon, Joseph
    [J]. STATISTICS AND COMPUTING, 2022, 32 (05)
  • [9] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [10] Variational Bayesian Inference in High-Dimensional Linear Mixed Models
    Yi, Jieyi
    Tang, Niansheng
    [J]. MATHEMATICS, 2022, 10 (03)