High-dimensional inference in misspecified linear models

被引:31
|
作者
Buehlmann, Peter [1 ]
van de Geer, Sara [1 ]
机构
[1] ETH, Seminar Stat, CH-8092 Zurich, Switzerland
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 01期
关键词
Confidence interval; de-sparsified Lasso; hypothesis test; Lasso; multiple sample splitting; sparsity; CONFIDENCE-INTERVALS; RECOVERY;
D O I
10.1214/15-EJS1041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider high-dimensional inference when the assumed linear model is misspecified. We describe some correct interpretations and corresponding sufficient assumptions for valid asymptotic inference of the model parameters, which still have a useful meaning when the model is misspecified. We largely focus on the de-sparsified Lasso procedure but we also indicate some implications for (multiple) sample splitting techniques. In view of available methods and software, our results contribute to robustness considerations with respect to model misspecification.
引用
收藏
页码:1449 / 1473
页数:25
相关论文
共 50 条
  • [1] Inference for treatment effect parameters in potentially misspecified high-dimensional models
    Dukes, Oliver
    Vansteelandt, Stijn
    [J]. BIOMETRIKA, 2021, 108 (02) : 321 - 334
  • [2] Double-Estimation-Friendly Inference for High-Dimensional Misspecified Models
    Shah, Rajen D.
    Buhlmann, Peter
    [J]. ENERGY AND BUILDINGS, 2023, 282 : 68 - 91
  • [3] Simultaneous Inference for High-Dimensional Linear Models
    Zhang, Xianyang
    Cheng, Guang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 757 - 768
  • [4] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    [J]. Science China Mathematics, 2024, 67 : 891 - 918
  • [5] High-dimensional robust inference for censored linear models
    Huang, Jiayu
    Wu, Yuanshan
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 891 - 918
  • [6] Spatially relaxed inference on high-dimensional linear models
    Jérôme-Alexis Chevalier
    Tuan-Binh Nguyen
    Bertrand Thirion
    Joseph Salmon
    [J]. Statistics and Computing, 2022, 32
  • [7] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    [J]. Science China Mathematics, 2024, 67 (04) : 891 - 918
  • [8] Spatially relaxed inference on high-dimensional linear models
    Chevalier, Jerome-Alexis
    Nguyen, Tuan-Binh
    Thirion, Bertrand
    Salmon, Joseph
    [J]. STATISTICS AND COMPUTING, 2022, 32 (05)
  • [9] Variational Bayesian Inference in High-Dimensional Linear Mixed Models
    Yi, Jieyi
    Tang, Niansheng
    [J]. MATHEMATICS, 2022, 10 (03)
  • [10] PROJECTION-BASED INFERENCE FOR HIGH-DIMENSIONAL LINEAR MODELS
    Yi, Sangyoon
    Zhang, Xianyang
    [J]. STATISTICA SINICA, 2022, 32 (02) : 915 - 937