A survey on model-based reinforcement learning

被引:0
|
作者
Fan-Ming LUO [1 ,2 ]
Tian XU [1 ]
Hang LAI [3 ]
Xiong-Hui CHEN [1 ,2 ]
Weinan ZHANG [3 ]
Yang YU [1 ,2 ]
机构
[1] National Key Laboratory for Novel Software Technology,Nanjing University
[2] Polixir. ai
[3] Department of Computer Science and Engineering,Shanghai Jiao Tong University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning(RL) interacts with the environment to solve sequential decision-making problems via a trial-and-error approach. Errors are always undesirable in real-world applications, even though RL excels at playing complex video games that permit several trial-and-error attempts. To improve sample efficiency and thus reduce errors, model-based reinforcement learning(MBRL) is believed to be a promising direction, as it constructs environment models in which trial-and-errors can occur without incurring actual costs. In this survey, we investigate MBRL with a particular focus on the recent advancements in deep RL. There is a generalization error between the learned model of a non-tabular environment and the actual environment. Consequently, it is crucial to analyze the disparity between policy training in the environment model and that in the actual environment, guiding algorithm design for improved model learning, model utilization, and policy training. In addition, we discuss the recent developments of model-based techniques in other forms of RL, such as offline RL, goal-conditioned RL, multi-agent RL, and meta-RL. Furthermore,we discuss the applicability and benefits of MBRL for real-world tasks. Finally, this survey concludes with a discussion of the promising future development prospects for MBRL. We believe that MBRL has great unrealized potential and benefits in real-world applications, and we hope this survey will encourage additional research on MBRL.
引用
收藏
页码:59 / 84
页数:26
相关论文
共 50 条
  • [31] Abstraction Selection in Model-Based Reinforcement Learning
    Jiang, Nan
    Kulesza, Alex
    Singh, Satinder
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 179 - 188
  • [32] Asynchronous Methods for Model-Based Reinforcement Learning
    Zhang, Yunzhi
    Clavera, Ignasi
    Tsai, Boren
    Abbeel, Pieter
    [J]. CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [33] Online Constrained Model-based Reinforcement Learning
    van Niekerk, Benjamin
    Damianou, Andreas
    Rosman, Benjamin
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [34] Calibrated Model-Based Deep Reinforcement Learning
    Malik, Ali
    Kuleshov, Volodymyr
    Song, Jiaming
    Nemer, Danny
    Seymour, Harlan
    Ermon, Stefano
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [35] Model gradient: unified model and policy learning in model-based reinforcement learning
    Chengxing Jia
    Fuxiang Zhang
    Tian Xu
    Jing-Cheng Pang
    Zongzhang Zhang
    Yang Yu
    [J]. Frontiers of Computer Science, 2024, 18
  • [36] Model gradient: unified model and policy learning in model-based reinforcement learning
    Jia, Chengxing
    Zhang, Fuxiang
    Xu, Tian
    Pang, Jing-Cheng
    Zhang, Zongzhang
    Yu, Yang
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [37] Incremental Learning of Planning Actions in Model-Based Reinforcement Learning
    Ng, Jun Hao Alvin
    Petrick, Ronald P. A.
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3195 - 3201
  • [38] Learning to Reweight Imaginary Transitions for Model-Based Reinforcement Learning
    Huang, Wenzhen
    Yin, Qiyue
    Zhang, Junge
    Huang, Kaiqi
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7848 - 7856
  • [39] Model-Based Transfer Reinforcement Learning Based on Graphical Model Representations
    Sun, Yuewen
    Zhang, Kun
    Sun, Changyin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 1035 - 1048
  • [40] Weighted model estimation for offline model-based reinforcement learning
    Hishinuma, Toru
    Senda, Kei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,