Transformer-based ensemble deep learning model for EEG-based emotion recognition

被引:0
|
作者
Xiaopeng Si [1 ,2 ]
Dong Huang [1 ,2 ]
Yulin Sun [1 ,2 ]
Shudi Huang [1 ,2 ]
He Huang [1 ,2 ]
Dong Ming [1 ,2 ]
机构
[1] Academy of Medical Engineering and Translational Medicine,Tianjin University
[2] Tianjin Key Laboratory of Brain Science and Neural Engineering,Tianjin University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TN911.7 [信号处理]; TP18 [人工智能理论]; R318 [生物医学工程];
学科分类号
0711 ; 080401 ; 080402 ; 081104 ; 0812 ; 0831 ; 0835 ; 1405 ;
摘要
Emotion recognition is one of the most important research directions in the field of brain–computer interface(BCI). However, to conduct electroencephalogram(EEG)-based emotion recognition, there exist difficulties regarding EEG signal processing; moreover, the performance of classification models in this regard is restricted. To counter these issues, the 2022 World Robot Contest successfully held an affective BCI competition, thus promoting the innovation of EEG-based emotion recognition. In this paper, we propose the Transformer-based ensemble(TBEM) deep learning model. TBEM comprises two models: a pure convolutional neural network(CNN)model and a cascaded CNN-Transformer hybrid model. The proposed model won the abovementioned affective BCI competition’s final championship in the 2022 World Robot Contest, demonstrating the effectiveness of the proposed TBEM deep learning model for EEG-based emotion recognition.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 50 条
  • [21] EEG-based Emotion Recognition via Transformer Neural Architecture Search
    Li, Chang
    Zhang, Zhongzhen
    Zhang, Xiaodong
    Huang, Guoning
    Liu, Yu
    Chen, Xun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (04) : 6016 - 6025
  • [22] Deep Learning Model With Adaptive Regularization for EEG-Based Emotion Recognition Using Temporal and Frequency Features
    Samavat, Alireza
    Khalili, Ebrahim
    Ayati, Bentolhoda
    Ayati, Marzieh
    [J]. IEEE ACCESS, 2022, 10 : 24520 - 24527
  • [23] EEG-based emotion recognition using modified covariance and ensemble classifiers
    Subasi A.
    Mian Qaisar S.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 575 - 591
  • [24] Developing an EEG-Based Emotion Recognition Using Ensemble Deep Learning Methods and Fusion of Brain Effective Connectivity Maps
    Bagherzadeh, Sara
    Shalbaf, Ahmad
    Shoeibi, Afshin
    Jafari, Mahboobeh
    Tan, Ru-San
    Acharya, U. Rajendra
    [J]. IEEE ACCESS, 2024, 12 : 50949 - 50965
  • [25] Enhanced deep capsule network for EEG-based emotion recognition
    Cizmeci, Huseyin
    Ozcan, Caner
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 463 - 469
  • [26] EEG-based emotion recognition with deep convolutional neural networks
    Ozdemir, Mehmet Akif
    Degirmenci, Murside
    Izci, Elf
    Akan, Aydin
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (01): : 43 - 57
  • [27] Enhanced deep capsule network for EEG-based emotion recognition
    Huseyin Cizmeci
    Caner Ozcan
    [J]. Signal, Image and Video Processing, 2023, 17 : 463 - 469
  • [28] Transformers for EEG-Based Emotion Recognition: A Hierarchical Spatial Information Learning Model
    Wang, Zhe
    Wang, Yongxiong
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (05) : 4359 - 4368
  • [29] PNN for EEG-based Emotion Recognition
    Zhang, Jianhai
    Chen, Ming
    Hu, Sanqing
    Cao, Yu
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2319 - 2323
  • [30] EEG-Based Emotion Recognition Using Deep Learning and M3GP
    Aguinaga, Adrian Rodriguez
    Delgado, Luis Munoz
    Lopez-Lopez, Victor Raul
    Tellez, Andres Calvillo
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (05):