Restricted Max-Min Allocation: Integrality Gap and Approximation Algorithm

被引:0
|
作者
Siu-Wing Cheng
Yuchen Mao
机构
[1] HKUST,Department of Computer Science and Engineering
[2] Zhejiang University,College of Computer Science and Technology
来源
Algorithmica | 2022年 / 84卷
关键词
Fair allocation; Local search; Approximation; Integrality gap;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set of players P, a set of indivisible resources R, and a set of non-negative values {vpr}p∈P,r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_{pr}\}_{p\in P, r\in R}$$\end{document}, an allocation is a partition of R into disjoint subsets {Cp}p∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_p\}_{p \in P}$$\end{document} so that each player p is assigned the resources in Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document}. The max-min fair allocation problem is to determine the allocation that maximizes minp∑r∈Cpvpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min _p \sum _{r\in C_p}v_{pr}$$\end{document}. In the restricted case of this problem, each resource r has an intrinsic value vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_r$$\end{document}, and vpr=vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{pr} = v_r$$\end{document} for every player p who desires r and vpr=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{pr} = 0$$\end{document} for every player p who does not. We study the restricted max-min fair allocation problem in this paper. For this problem, the configuration LP has played an important role in estimating and approximating the optimal solution. Our first result is an upper bound of 32126\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\frac{21}{26}$$\end{document} on the integrality gap, which is currently the best. It is obtained by a tighter analysis of the local search of Asadpour et al. [TALG’12]. It remains unknown whether this local search runs in polynomial time or not. Our second result is a polynomial-time algorithm that achieves an approximation ratio of 4+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 + \delta $$\end{document} for any constant δ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,1)$$\end{document}. Our algorithm can be seen as a generalization of the aforementioned local search.
引用
收藏
页码:1835 / 1874
页数:39
相关论文
共 50 条
  • [41] Less Complex Algorithm to Max-Min the Resource Allocation for Unmanned Aerial Vehicles Networks
    Alsmadi, Hamzih
    Alsheyab, Huda
    Alsmadi, Malek
    Ikki, Salama
    [J]. 2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [42] Explicit rate allocation algorithm of generalised max-min fairness for ATM ABR services
    Long, YH
    Ho, TK
    Rad, AB
    [J]. ELECTRONICS LETTERS, 1999, 35 (07) : 530 - 531
  • [43] A Modified Max-Min Fair Dynamic Bandwidth Allocation Algorithm for XG-PONs
    Gravalosa, Ilias
    Yiannopoulos, Konstantinos
    Papadimitriou, Georgios
    Varvarigos, Emmanouel A.
    [J]. 2014 19TH EUROPEAN CONFERENCE ON NETWORKS AND OPTICAL COMMUNICATIONS - (NOC), 2014, : 57 - 62
  • [44] A Deterministic Algorithm for Min-max and Max-min Linear Fractional Programming Problems
    Qigao Feng
    Hongwei Jiao
    Hanping Mao
    Yongqiang Chen
    [J]. International Journal of Computational Intelligence Systems, 2011, 4 (2) : 134 - 141
  • [45] A Deterministic Algorithm for Min-max and Max-min Linear Fractional Programming Problems
    Feng, Qigao
    Jiao, Hongwei
    Mao, Hanping
    Chen, Yongqiang
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2011, 4 (02): : 134 - 141
  • [46] Spatio-temporal max-min fair rate allocation
    Tsai, WK
    Iyer, M
    [J]. ICC 2000: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONFERENCE RECORD, VOLS 1-3: GLOBAL CONVERGENCE THROUGH COMMUNICATIONS, 2000, : 480 - 484
  • [47] Power Allocation with Max-Min and Min-Max Fairness for Cognitive Radio Networks with Imperfect CSI
    Tang Lun
    Yan Jing-lin
    Li Qing
    Chen Qian-bin
    Wang Huan
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2012, 65 (03) : 671 - 687
  • [48] MAX-MIN PROBLEMS
    KAPUR, KC
    [J]. NAVAL RESEARCH LOGISTICS, 1973, 20 (04) : 639 - 644
  • [49] DMMF: Dominant and Max-Min Fair Allocation in Satellite Networks
    LIN Fuhong
    ZHENG Yi
    ZHOU Xianwei
    L Xing
    [J]. 中国通信., 2015, 12(S2) (S2) - 154
  • [50] Joint Resource Allocation for Max-Min Throughput in Multicell Networks
    Li, Zhuo
    Guo, Song
    Zeng, Deze
    Barnawi, Ahmed
    Stojmenovic, Ivan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (09) : 4546 - 4559