Restricted Max-Min Allocation: Integrality Gap and Approximation Algorithm

被引:0
|
作者
Siu-Wing Cheng
Yuchen Mao
机构
[1] HKUST,Department of Computer Science and Engineering
[2] Zhejiang University,College of Computer Science and Technology
来源
Algorithmica | 2022年 / 84卷
关键词
Fair allocation; Local search; Approximation; Integrality gap;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set of players P, a set of indivisible resources R, and a set of non-negative values {vpr}p∈P,r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_{pr}\}_{p\in P, r\in R}$$\end{document}, an allocation is a partition of R into disjoint subsets {Cp}p∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_p\}_{p \in P}$$\end{document} so that each player p is assigned the resources in Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document}. The max-min fair allocation problem is to determine the allocation that maximizes minp∑r∈Cpvpr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min _p \sum _{r\in C_p}v_{pr}$$\end{document}. In the restricted case of this problem, each resource r has an intrinsic value vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_r$$\end{document}, and vpr=vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{pr} = v_r$$\end{document} for every player p who desires r and vpr=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{pr} = 0$$\end{document} for every player p who does not. We study the restricted max-min fair allocation problem in this paper. For this problem, the configuration LP has played an important role in estimating and approximating the optimal solution. Our first result is an upper bound of 32126\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\frac{21}{26}$$\end{document} on the integrality gap, which is currently the best. It is obtained by a tighter analysis of the local search of Asadpour et al. [TALG’12]. It remains unknown whether this local search runs in polynomial time or not. Our second result is a polynomial-time algorithm that achieves an approximation ratio of 4+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 + \delta $$\end{document} for any constant δ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,1)$$\end{document}. Our algorithm can be seen as a generalization of the aforementioned local search.
引用
收藏
页码:1835 / 1874
页数:39
相关论文
共 50 条
  • [1] Restricted Max-Min Allocation: Integrality Gap and Approximation Algorithm
    Cheng, Siu-Wing
    Mao, Yuchen
    [J]. ALGORITHMICA, 2022, 84 (07) : 1835 - 1874
  • [2] Combinatorial Algorithm for Restricted Max-Min Fair Allocation
    Annamalai, Chidambaram
    Kalaitzis, Christos
    Svensson, Ola
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [3] AN APPROXIMATION ALGORITHM FOR MAX-MIN FAIR ALLOCATION OF INDIVISIBLE GOODS
    Asadpour, Arash
    Saberi, Amin
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2970 - 2989
  • [4] Approximation algorithms for the max-min allocation problem
    Khot, Subhash
    Ponnuswami, Ashok Kumar
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 204 - +
  • [5] On (1, ε)-Restricted Max-Min Fair Allocation Problem
    Chan, T. -H. Hubert
    Tang, Zhihao Gavin
    Wu, Xiaowei
    [J]. ALGORITHMICA, 2018, 80 (07) : 2181 - 2200
  • [6] An Approximation Alaorithm for Max-Min Fair Allocation of Indivisible Goods
    Asadpour, Arash
    Saberi, Amin
    [J]. STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 114 - 121
  • [7] Research on the utility max-min fair algorithm of resource allocation
    Xu, T
    Liao, JX
    [J]. PERFORMANCE CHALLENGES FOR EFFICIENT NEXT GENERATION NETWORKS, VOLS 6A-6C, 2005, 6A-6C : 1967 - 1976
  • [8] An approximation algorithm for the general max-min resource sharing problem
    Klaus Jansen
    [J]. Mathematical Programming, 2006, 106 : 547 - 566
  • [9] An Optimal Local Approximation Algorithm for Max-Min Linear Programs
    Floreen, Patrik
    Kaasinen, Joel
    Kaski, Petteri
    Suomela, Jukka
    [J]. SPAA'09: PROCEEDINGS OF THE TWENTY-FIRST ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2009, : 260 - 269
  • [10] An approximation algorithm for the general max-min resource sharing problem
    Jansen, K
    [J]. MATHEMATICAL PROGRAMMING, 2006, 106 (03) : 547 - 566