On the number of representations of integers by quaternary quadratic forms

被引:0
|
作者
Huixue Lao
Zhenxing Xie
Dan Wang
机构
[1] Shandong Normal University,School of Mathematics and Statistics
[2] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
关键词
Quaternary quadratic form; Asymptotic formula; Fourier coefficient; Cusp form; 11F30; 11F70;
D O I
暂无
中图分类号
学科分类号
摘要
Let R1(n),R2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_1(n), R_2(n)$$\end{document} denote the numbers of representations of a positive integer n by the quaternary quadratic forms g1(x1,x2,x3,x4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_1(x_1,x_2,x_3,x_4)$$\end{document} = 2(x12+x1x2+x22)+2x1x3+x1x4+x2x3+2x2x4+2(x32+x3x4+x42),g2(x1,x2,x3,x4)=8(x12+x22)+x32+x42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2( x_{1}^{2}+x_1 x_2+ x_{2}^{2})+2x_1x_3 +x_1x_4+ x_2x_3+2x_2x_4+2(x_{3}^{2}+x_3 x_4+x_{4}^{2}), g_2(x_{1},x_2,x_3,x_4)=8( x_{1}^{2}+x_{2}^{2})+x_{3}^{2}+x_{4}^{2}$$\end{document}, respectively, where x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_2$$\end{document}, x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_3$$\end{document} and x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_4$$\end{document} are integers. In this paper, we establish the asymptotic formulae for the sums ∑n≤xRi(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{n\le x}R_i(n)$$\end{document} and ∑n≤xRi2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{n\le x}R_i^{2}(n)$$\end{document} for i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document}.
引用
下载
收藏
页码:395 / 406
页数:11
相关论文
共 50 条