A Frequency Domain Method for Analyzing Period Doubling Bifurcations in Discrete-Time Systems

被引:0
|
作者
Maria Belen D'Amico
Jorge L. Moiola
Eduardo E. Paolini
机构
[1] Departmento de Ingenieria Electrica y de Computadoras,
[2] Universidad Nacional del Sur (UNS),undefined
[3] Avda Alem 1253,undefined
[4] B8000CPB Bahia Blanca,undefined
[5] Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET),undefined
关键词
Control System; Frequency Domain; Nonlinear System; Dynamical Behavior; Adaptive Control;
D O I
暂无
中图分类号
学科分类号
摘要
A frequency domain methodology for the approximation of period doubling bifurcations in discrete-time nonlinear systems is presented. The computation of a stability index, which characterizes the dynamical behavior of the emerging period-two orbit is also derived. The technique is applied to estimate the domain of attraction of the fixed point in an adaptive control system and to improve the dynamical behavior of a buck converter.
引用
收藏
页码:517 / 536
页数:19
相关论文
共 50 条
  • [31] Singular H2 control of discrete-time systems: From frequency to time domain
    Stefanovski, Jovan
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (17) : 1930 - 1944
  • [32] On the frequency response of scalar discrete-time systems
    de la Barra, BAL
    Prieto, R
    [J]. AUTOMATICA, 1999, 35 (11) : 1843 - 1853
  • [33] Combined invariant subspace & frequency-domain subspace method for identification of discrete-time MIMO linear systems☆
    You, Jingze
    Huang, Chao
    Zhang, Hao
    [J]. SYSTEMS & CONTROL LETTERS, 2023, 181
  • [34] On the detection of period doubling bifurcations in nonlinear feedback systems
    Moiola, JL
    Berns, DW
    [J]. CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 465 - 468
  • [35] Homoclinic and period-doubling bifurcations for damped systems
    Bessi, Ugo
    [J]. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1995, 12 (01): : 1 - 25
  • [36] Controlling Neimark-Sacker bifurcations in discrete-time multivariable systems
    D'Amico, Maria Belen
    Chen, Guanrong
    Paolini, Eduardo E.
    Moiola, Jorge L.
    [J]. SYSTEMS & CONTROL LETTERS, 2009, 58 (05) : 359 - 364
  • [37] Computational method for estimating the domain of attraction of discrete-time uncertain rational systems
    Polcz, Peter
    Peni, Tamas
    Szederkenyi, Gabor
    [J]. EUROPEAN JOURNAL OF CONTROL, 2019, 49 : 68 - 83
  • [38] HOMOCLINIC AND PERIOD-DOUBLING BIFURCATIONS FOR DAMPED SYSTEMS
    BESSI, U
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (01): : 1 - 25
  • [39] PERIOD DOUBLING BIFURCATIONS AND UNIVERSALITY IN CONSERVATIVE-SYSTEMS
    BOUNTIS, TC
    [J]. PHYSICA D, 1981, 3 (03): : 577 - 589
  • [40] On period doubling bifurcations of cycles and the harmonic balance method
    Itovich, GR
    Moiola, JL
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 647 - 665