Non-simple Purely Infinite Steinberg Algebras with Applications to Kumjian–Pask Algebras

被引:0
|
作者
Hossein Larki
机构
[1] Shahid Chamran University of Ahvaz,Department of Mathematics, Faculty of Mathematical Sciences and Computer
来源
关键词
Purely infinite ring; Groupoid; Steinberg algebra; Higher-rank grph; Kumjian–Pask algebra; 16S60; 46L06;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properly purely infinite Steinberg algebras AK(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_K({\mathcal {G}})$$\end{document} for strongly effective, ample Hausdorff groupoids G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document}. As an application, we show that the notions of pure infiniteness and proper pure infiniteness are equivalent for the Kumjian–Pask algebra KPK(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_K(\Lambda )$$\end{document} in case Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} is a strongly aperiodic k-graph. In particular, for unital cases, we give simple graph-theoretic criteria for the (proper) pure infiniteness of KPK(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_K(\Lambda )$$\end{document}. Furthermore, since the complex Steinberg algebra AC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\mathbb {C}}({\mathcal {G}})$$\end{document} is a dense subalgebra of the reduced groupoid C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra Cr∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*_r({\mathcal {G}})$$\end{document}, we focus on the problem that “when does the proper pure infiniteness of AC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\mathbb {C}}({\mathcal {G}})$$\end{document} imply that of Cr∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*_r({\mathcal {G}})$$\end{document} in the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-sense?”. In particular, we show that if the Kumjian–Pask algebra KPC(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_{\mathbb {C}}(\Lambda )$$\end{document} is purely infinite, then so is C∗(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*(\Lambda )$$\end{document} in the sense of Kirchberg–Rørdam.
引用
收藏
相关论文
共 50 条
  • [31] Kumjian-Pask algebras of locally convex higher-rank graphs
    Clark, Lisa Orloff
    Flynn, Claire
    Huef, Astrid an
    JOURNAL OF ALGEBRA, 2014, 399 : 445 - 474
  • [32] Classification of certain non-simple C*-algebras
    Mortensen, J
    JOURNAL OF OPERATOR THEORY, 1999, 41 (02) : 223 - 259
  • [33] SPECTRAL ISOMETRIES ON NON-SIMPLE C*-ALGEBRAS
    Mathieu, Martin
    Sourour, Ahmed R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (01) : 129 - 135
  • [34] K-theory for certain extension algebras of purely infinite simple C*-algebras
    Liu, Shudong
    Fang, Xiaochun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (04): : 409 - 415
  • [35] Positive combinations of projections in von Neumann algebras and purely infinite simple C*-algebras
    KAFTAL Victor
    NG PingWong
    ScienceChina(Mathematics), 2011, 54 (11) : 2383 - 2393
  • [36] POSITIVE COMBINATIONS AND SUMS OF PROJECTIONS IN PURELY INFINITE SIMPLE C*-ALGEBRAS AND THEIR MULTIPLIER ALGEBRAS
    Kaftal, Victor
    Ng, P. W.
    Zhang, Shuang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (08) : 2735 - 2746
  • [37] K-theory for certain extension algebras of purely infinite simple C*-algebras
    Shudong Liu
    Xiaochun Fang
    Proceedings - Mathematical Sciences, 2010, 120 : 409 - 415
  • [38] Positive combinations of projections in von Neumann algebras and purely infinite simple C*-algebras
    Kaftal, Victor
    Ng PingWong
    Zhang Shuang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (11) : 2383 - 2393
  • [39] Positive combinations of projections in von Neumann algebras and purely infinite simple C*-algebras
    Victor Kaftal
    PingWong Ng
    Shuang Zhang
    Science China Mathematics, 2011, 54 : 2383 - 2393
  • [40] PURELY INFINITE CORONA ALGEBRAS
    Kaftal, Victor
    Ng, P. W.
    Zhang, Shuang
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 307 - 355