Permanence in nonautonomous predator-prey lotka-volterra systems

被引:0
|
作者
Sun W.-J. [1 ]
Teng Z.-D. [2 ]
Yu A.-H. [3 ]
机构
[1] Department of Applied Mathematics, Shanghai Jiaotong University
[2] Department of Mathematics, Xinjiang University
[3] Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences
关键词
Nonautonomous lotka-volterra system; Permanence; extinction; Predator-prey;
D O I
10.1007/s102550200041
中图分类号
学科分类号
摘要
In this paper some easily verifiable sufficient conditions on the permanence of solutions for general nonautonomous two-species predator-prey model are established. These new criteria improve and extend the results given by Ma, Wang 3, Teng 4 and Teng, Yu 6. © Springer-Verlag 2002.
引用
收藏
页码:411 / 422
页数:11
相关论文
共 50 条
  • [41] The permanence and global attractivity in a nonautonomous Lotka-Volterra system
    Zhao, JD
    Jiang, JF
    Lazer, AC
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (02) : 265 - 276
  • [42] Permanence and extinction in nonautonomous competitive Lotka-Volterra system
    Zhao, Jiandong
    Ruan, Jiong
    Fu, Liping
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 229 - 234
  • [43] Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment
    Takeuchi, Y.
    Du, N. H.
    Hieu, N. T.
    Sato, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 938 - 957
  • [44] Lotka-Volterra predator-prey model with periodically varying carrying capacity
    Swailem, Mohamed
    Tauber, Uwe C.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [45] Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system
    Yan, Xiang-Ping
    Chu, Yan-Dong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 198 - 210
  • [46] DYNAMICS IN A COMPETITIVE LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH MULTIPLE DELAYS
    Xu, Changjin
    Wu, Yusen
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 231 - 244
  • [47] PERSISTENCE IN A THREE SPECIES LOTKA-VOLTERRA NONPERIODIC PREDATOR-PREY SYSTEM
    张银萍
    孙继涛
    Applied Mathematics and Mechanics(English Edition), 2000, (08) : 879 - 884
  • [48] Persistence in a three species Lotka-Volterra nonperiodic Predator-Prey system
    Zhang, YP
    Sun, JT
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (08) : 879 - 884
  • [49] PERSISTENCE IN A THREE SPECIES LOTKA-VOLTERRA PERIODIC PREDATOR-PREY SYSTEM
    CHEN Lansun
    PENG Qiuliang(Institute of Mathematics
    Systems Science and Mathematical Sciences, 1994, (04) : 337 - 343
  • [50] Taylor collocation approach for delayed Lotka-Volterra predator-prey system
    Gokmen, Elcin
    Isik, Osman Rasit
    Sezer, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 671 - 684