A multi-population evolutionary algorithm for multi-objective constrained portfolio optimization problem

被引:0
|
作者
Meriem Hemici
Djaafar Zouache
机构
[1] University of Mohamed El Bachir El Ibrahimi,Department of Mathematics
[2] University of Mohamed El Bachir El Ibrahimi,Department of Computer Science
[3] University of Science and Technology Houari Boumediene,LRIA Laboratory
来源
关键词
Multiobjective evolutionary algorithm (MOEA); Multi-population; Multi-objective constrained portfolio optimization problem (MOCPOP);
D O I
暂无
中图分类号
学科分类号
摘要
Due to the rapid development of the financial market, the portfolio selection problem has become of the most complex problem in finance. This paper proposes a new multi-objective evolutionary algorithm based on multi-population, called MP-MOEA, to handle the multi-objective constrained portfolio optimization problem (MOCPOP) in order to achieve an optimal trade-off between return and risk. MP-MOEA uses a multi-population strategy to improve the solution’s quality and considerably accelerate the convergence. Furthermore, two types of archives (local and global) are employed, where the archives local are used to store the non-dominated solutions corresponding to each subpopulation, and the external archive global is used to store the Pareto solutions. The external archive global is controlled using crowding distance to limit the archive size and avoid increasing the complexity of the MP-MOEA algorithm. Several experiments are conducted on two datasets of instances to compare our algorithm with three elevant state-of-art algorithms including AR-MOEA, MOEA/D-AGR, MOEA/D-GR, MOEA/D, MODEwAwL, and MOPSO. The first dataset consists of 5 instances from OR-Library, while other dataset consists 15 instances from NGINX. Statistical analysis of the comparative results obtained using ANOVA and Wilcoxon test demonstrate the merits and the outperformance of our MP-MOEA algorithm.
引用
下载
收藏
页码:3299 / 3340
页数:41
相关论文
共 50 条
  • [41] A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem
    Shang, Ronghua
    Wang, Yuying
    Wang, Jia
    Jiao, Licheng
    Wang, Shuo
    Qi, Liping
    INFORMATION SCIENCES, 2014, 277 : 609 - 642
  • [42] A Bi-population Multi-objective Algorithm for Continuous Multi-objective Optimization Problem
    Chen, Lili
    Wang, Hongfeng
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 4830 - 4833
  • [43] A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    Wang, Honghai
    APPLIED SOFT COMPUTING, 2019, 80 : 42 - 56
  • [44] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):
  • [45] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [46] A Comparative Study of Constrained Multi-objective Evolutionary Algorithms on Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Fang, Yi
    Lu, Jiewei
    Wei, Caimin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 209 - 216
  • [47] An evolutionary algorithm for solving dynamic multi-objective optimization problem
    Liu, Chunan
    Dou, Xiaoxia
    Journal of Computational Information Systems, 2013, 9 (07): : 2837 - 2844
  • [48] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [49] Dynamic-multi-task-assisted evolutionary algorithm for constrained multi-objective optimization
    Ye, Qianlin
    Wang, Wanliang
    Li, Guoqing
    Wang, Zheng
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 90
  • [50] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891