Complexity measure by ordinal matrix growth modeling

被引:0
|
作者
J. S. Armand Eyebe Fouda
Wolfram Koepf
机构
[1] University of Yaoundé I,Department of Physics, Faculty of Science
[2] University of Kassel,Institute of Mathematics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Complexity; Ordinal matrix; Lyapunov exponent; Time series;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new approach based on the modeling of the behavior of the number of ordinal matrices derived from time series, as a function of the embedding dimension. We show that the number of distinct ordinal matrices can be used for determining whether the dynamics are regular or chaotic by means of the periodicity (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}), quasiperiodicity (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) and nonregularity (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) index herein defined. We verify that λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} behaves similarly to the Lyapunov exponent and therefore can be used for measuring complexity in time series whose underlying equations are unknown. Moreover, the combination of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} enables us to distinguish between deterministic and stochastic data. We thus propose the variation law of the number of ordinal matrices characterizing the random walk.
引用
收藏
页码:1385 / 1395
页数:10
相关论文
共 50 条
  • [41] A new measure of nominal-ordinal association
    Piccarreta, R
    [J]. JOURNAL OF APPLIED STATISTICS, 2001, 28 (01) : 107 - 120
  • [42] Ordinal-measure based shape correspondence
    Cheikh, FA
    Cramariuc, B
    Partio, P
    Reijonen, P
    Gabbouj, M
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (04) : 362 - 371
  • [43] MODELING ORDINAL RECURRENT EVENTS
    BERRIDGE, DM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 47 (1-2) : 71 - 78
  • [44] MODELING ORDINAL SCALE DISAGREEMENT
    TANNER, MA
    YOUNG, MA
    [J]. PSYCHOLOGICAL BULLETIN, 1985, 98 (02) : 408 - 415
  • [45] Robust Key Points Matching by Ordinal Measure
    Lakshmi, S.
    Sankaranarayanan, V.
    [J]. SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION, 2011, 260 : 346 - +
  • [46] Planning horizons as an ordinal entropic measure of organization
    Jennings, Frederic B., Jr.
    [J]. JOURNAL OF PHILOSOPHICAL ECONOMICS, 2016, 10 (01): : 58 - 80
  • [47] A measure of ordinal concordance for the evaluation of University courses
    Marasini, Donata
    Quatto, Piero
    Ripamonti, Enrico
    [J]. INNOVATION AND SOCIETY - STATISTICAL METHODS FOR THE EVALUATION OF SERVICES, 2014, 17 : 39 - 46
  • [48] A hierarchical model for ordinal matrix factorization
    Ulrich Paquet
    Blaise Thomson
    Ole Winther
    [J]. Statistics and Computing, 2012, 22 : 945 - 957
  • [49] A hierarchical model for ordinal matrix factorization
    Paquet, Ulrich
    Thomson, Blaise
    Winther, Ole
    [J]. STATISTICS AND COMPUTING, 2012, 22 (04) : 945 - 957
  • [50] Random matrix theory for complexity growth and black hole interiors
    Kar, Arjun
    Lamprou, Lampros
    Rozali, Moshe
    Sully, James
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)