Complexity measure by ordinal matrix growth modeling

被引:0
|
作者
J. S. Armand Eyebe Fouda
Wolfram Koepf
机构
[1] University of Yaoundé I,Department of Physics, Faculty of Science
[2] University of Kassel,Institute of Mathematics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Complexity; Ordinal matrix; Lyapunov exponent; Time series;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new approach based on the modeling of the behavior of the number of ordinal matrices derived from time series, as a function of the embedding dimension. We show that the number of distinct ordinal matrices can be used for determining whether the dynamics are regular or chaotic by means of the periodicity (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}), quasiperiodicity (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) and nonregularity (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) index herein defined. We verify that λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} behaves similarly to the Lyapunov exponent and therefore can be used for measuring complexity in time series whose underlying equations are unknown. Moreover, the combination of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} enables us to distinguish between deterministic and stochastic data. We thus propose the variation law of the number of ordinal matrices characterizing the random walk.
引用
收藏
页码:1385 / 1395
页数:10
相关论文
共 50 条
  • [1] Complexity measure by ordinal matrix growth modeling
    Fouda, J. S. Armand Eyebe
    Koepf, Wolfram
    [J]. NONLINEAR DYNAMICS, 2017, 89 (02) : 1385 - 1395
  • [2] Modeling and inference for an ordinal effect size measure
    Ryu, Euijung
    Agresti, Alan
    [J]. STATISTICS IN MEDICINE, 2008, 27 (10) : 1703 - 1717
  • [3] Capturing synchronization with complexity measure of ordinal pattern transition network constructed by crossplot
    Chen, Xiaobi
    Xu, Guanghua
    He, Bo
    Zhang, Sicong
    Su, Zijvn
    Jia, Yaguang
    Zhang, Xun
    Zhao, Zhe
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (06):
  • [4] On the Complexity of Ordinal Clustering
    Rahul Shah
    Martin Farach-Colton
    [J]. Journal of Classification, 2006, 23 : 79 - 102
  • [5] On the complexity of ordinal clustering
    Shah, Rahul
    Farach-Colton, Martin
    [J]. JOURNAL OF CLASSIFICATION, 2006, 23 (01) : 79 - 102
  • [6] Distance correlation entropy and ordinal distance complexity measure: efficient tools for complex systems
    Zhang, Boyi
    Shang, Pengjian
    [J]. NONLINEAR DYNAMICS, 2024, 112 (02) : 1153 - 1172
  • [7] MEASURE OF ORDINAL CONSENSUS
    LEIK, RK
    [J]. PACIFIC SOCIOLOGICAL REVIEW, 1966, 9 (02): : 85 - 90
  • [8] Distance correlation entropy and ordinal distance complexity measure: efficient tools for complex systems
    Boyi Zhang
    Pengjian Shang
    [J]. Nonlinear Dynamics, 2024, 112 : 1153 - 1172
  • [9] The Measure of Human Vital Signals Complexity by Matrix Analysis
    Bikulciene, Liepa
    Venskaityte, Eurelija
    Gargasas, Liudas
    Jurkonis, Vidmantas
    [J]. CHAOS AND COMPLEX SYSTEMS, 2013, : 449 - 458
  • [10] ORDINAL COMPLEXITY OF RECURSIVE DEFINITIONS
    FAIRTLOUGH, MVH
    WAINER, SS
    [J]. INFORMATION AND COMPUTATION, 1992, 99 (02) : 123 - 153