Existence and Ulam stability for random fractional integro-differential equation

被引:0
|
作者
Le Si Dong
Ngo Van Hoa
Ho Vu
机构
[1] Banking University of Ho Chi Minh City,Faculty of Mathematical Economics
[2] Ton Duc Thang University,Division of Computational Mathematics and Engineering, Institute for Computational Science
[3] Ton Duc Thang University,Faculty of Mathematics and Statistics
来源
Afrika Matematika | 2020年 / 31卷
关键词
Random fractional differential equation; Second-order stochastic processes; Mean square continuous solution; 34A12; 34A30; 34D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of solution for random fractional integro-differential equation. The existence of at least mean square continuous solution for this problem is discussed. Using the fixed point theorem, Ulam–Hyers stability and Ulam–Hyers–Rassias stability of random fractional integro-differential equation are studied. Finally, we give an example to illustrate our results.
引用
收藏
页码:1283 / 1294
页数:11
相关论文
共 50 条
  • [21] Ulam-Hyers stability for a nonlinear Volterra integro-differential equation
    Ho Vu
    Ngo Van Hoa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1261 - 1269
  • [22] Uniqueness and existence of positive solutions for the fractional integro-differential equation
    Ying Wang
    Lishan Liu
    Boundary Value Problems, 2017
  • [23] Ulam-Hyers-Rassias Stability for a Class of Fractional Integro-Differential Equations
    Capelas de Oliveira, E.
    Sousa, J. Vanterler da C.
    RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [24] Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations
    Eidinejad, Zahra
    Saadati, Reza
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) : 6536 - 6550
  • [25] Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions
    Baleanu, Dumitru
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Sandrasekaran, Varshini
    AIMS MATHEMATICS, 2022, 8 (02): : 2556 - 2575
  • [26] Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions
    Sudsutad, Weerawat
    Thaiprayoon, Chatthai
    Ntouyas, Sotiris K.
    AIMS MATHEMATICS, 2021, 6 (04): : 4119 - 4141
  • [28] Stability of an integro-differential equation
    Jin, Chuhua
    Luo, Jiaowan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1080 - 1088
  • [29] Existence of solutions of infinite system of hybrid fractional integro-differential equation
    Deka, Simasri
    Das, Anupam
    Deuri, Bhuban Chandra
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 231 - 257
  • [30] Existence of Solution for Fractional Stochastic Integro-Differential Equation with Impulsive Effect
    Nadeem, Mohd
    Dabas, Jaydev
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 373 - 380