Why scalar products in the algebraic Bethe ansatz have determinant representation

被引:0
|
作者
S. Belliard
N. A. Slavnov
机构
[1] Université de Tours,Institut Denis
[2] Université d’Orléans,Poisson
[3] Steklov Mathematical Institute of Russian Academy of Sciences,undefined
关键词
Integrable Field Theories; Lattice Integrable Models;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the scalar products of on-shell and off-shell Bethe vectors in the algebralic Bethe ansatz solvable models satisfy a system of linear equations. We find solutions to this system for a wide class of integrable models. We also apply our method to the XXX spin chain with broken U(l) symmetry.
引用
收藏
相关论文
共 50 条
  • [31] ALGEBRAIC BETHE ANSATZ OF BELAVIN ZNXZN SYMMETRIC MODEL
    ZHOU, YK
    YAN, ML
    HOU, BY
    PHYSICS LETTERS A, 1988, 133 (7-8) : 391 - 394
  • [32] Derivation of the matrix product ansatz for the Heisenberg chain from the algebraic Bethe ansatz
    Katsura, Hosho
    Maruyama, Isao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (17)
  • [33] How the algebraic Bethe Ansatz works for integrable models
    Faddeev, LD
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 149 - 219
  • [34] Algebraic Bethe ansatz for the anisotropic supersymmetric U model
    Hibberd, KE
    Gould, MD
    Links, JR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (24): : 8053 - 8065
  • [35] Algebraic bethe ansatz for the FPL2 model
    Jacobsen, J
    Zinn-Justin, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (29): : 7213 - 7225
  • [36] A new integral representation for the scalar products of Bethe states for the XXX spin chain
    Kazama, Yoichi
    Komatsu, Shota
    Nishimura, Takuya
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [37] A new integral representation for the scalar products of Bethe states for the XXX spin chain
    Yoichi Kazama
    Shota Komatsu
    Takuya Nishimura
    Journal of High Energy Physics, 2013
  • [38] ACTION OF THE MONODROMY MATRIX ELEMENTS IN THE GENERALIZED ALGEBRAIC BETHE ANSATZ
    Kulkarni, G.
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (03) : 1889 - 1906
  • [39] Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
    Khachatryan, Sh.
    Ferraz, A.
    Kluemper, A.
    Sedrakyan, A.
    NUCLEAR PHYSICS B, 2015, 899 : 444 - 450
  • [40] The algebraic Bethe Ansatz without the Yang-Baxter equation
    Schmidt, Jeffrey R.
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (10) : 1177 - 1193