Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA

被引:0
|
作者
Helmut Bächle
Bernhard Zimmer
Gerd Wegener
机构
[1] Technische Universität München,Holzforschung München
[2] Bayerisches Institut für nachhaltige Entwicklung,undefined
来源
关键词
Treatment Intensity; Thermal Modification; Model Distance; Pattern Recognition Method; Beech Sample;
D O I
暂无
中图分类号
学科分类号
摘要
Quality assessment of thermally modified wood has evolved as one of the major fields in the research on thermal modification of wood. This study investigates NIR spectroscopy in combination with the pattern recognition method of soft independent modeling of class analogies (SIMCA). Focus is put on identifying different treatment intensities of thermally modified samples of beech, ash, and Norway spruce. The results indicate that SIMCA classification based on NIR spectroscopy could be used for quality control of thermally modified wood. The method might be applicable for producers (pre-delivery checks) and customers (reception control). However, transfer from laboratory to industrial conditions needs further investigation.
引用
收藏
页码:1181 / 1192
页数:11
相关论文
共 50 条
  • [41] Shell egg albumen height assessment by FT-NIR spectroscopy
    Berardinelli, A
    Giunchi, A
    Guarnieri, A
    Pezzi, F
    Ragni, L
    TRANSACTIONS OF THE ASAE, 2005, 48 (04): : 1423 - 1428
  • [42] Detection of moldy corns with FT-NIR spectroscopy based on SVM
    Yuan, Ying
    Wang, Wei
    Chu, Xuan
    Xi, Mingjie
    Journal of the Chinese Cereals and Oils Association, 2015, 30 (05) : 143 - 146
  • [43] Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
    De Girolamo, Annalisa
    Cervellieri, Salvatore
    Visconti, Angelo
    Pascale, Michelangelo
    TOXINS, 2014, 6 (11): : 3129 - 3143
  • [44] Detection of Starch Adulteration in Onion Powder by FT-NIR and FT-IR Spectroscopy
    Lohumi, Santosh
    Lee, Sangdae
    Lee, Wang-Hee
    Kim, Moon S.
    Mo, Changyeun
    Bae, Hanhong
    Cho, Byoung-Kwan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (38) : 9246 - 9251
  • [45] Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy
    Silvio D. Rodríguez
    M. P. López-Fernández
    S. Maldonado
    M. P. Buera
    Journal of Food Science and Technology, 2019, 56 : 4457 - 4464
  • [46] Evidence on the discrimination of quinoa grains with a combination of FT-MIR and FT-NIR spectroscopy
    Rodriguez, Silvio D.
    Lopez-Fernandez, M. P.
    Maldonado, S.
    Buera, M. P.
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2019, 56 (10): : 4457 - 4464
  • [47] FT-NIR spectroscopy and multivariate classification strategies for the postharvest quality of green-fleshed kiwifruit varieties
    Ciccoritti, Roberto
    Paliotta, Mariano
    Amoriello, Tiziana
    Carbone, Katya
    SCIENTIA HORTICULTURAE, 2019, 257
  • [48] Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy
    Pizzi, A.
    Toscano, G.
    Pedretti, E. Foppa
    Duca, D.
    Rossini, G.
    Mengarelli, C.
    Ilari, A.
    Renzi, A.
    Mancini, M.
    ENERGY, 2018, 147 : 51 - 58
  • [49] Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy
    Sunoj, S.
    Igathinathane, C.
    Visvanathan, R.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 124 : 234 - 242
  • [50] Determination of ethyl octanoate in Chinese liquor using FT-NIR spectroscopy
    Liu, J.
    Dong, X.
    Han, S.
    Xie, A.
    Li, X.
    Li, P.
    Xu, B.
    Luo, D.
    INTERNATIONAL FOOD RESEARCH JOURNAL, 2021, 28 (01): : 199 - 206