Hadamard Products of Symbolic Powers and Hadamard Fat Grids

被引:0
|
作者
I. Bahmani Jafarloo
C. Bocci
E. Guardo
G. Malara
机构
[1] Università degli studi di Catania,Dipartimento di Matematica e Informatica
[2] Università degli studi di Siena,Department of Information Engineering and Mathematics
[3] Pedagogical University of Cracow,Institute of Mathematics
来源
关键词
Hadamard products; fat grids; Waldschmidt constant; resurgence; 13F20; 13D02; 13C40; 14N20; 14M99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we address the question if, for points P,Q∈P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P, Q \in \mathbb {P}^{2}$$\end{document}, I(P)m⋆I(Q)n=I(P⋆Q)m+n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(P)^{m} \star I(Q)^{n}=I(P \star Q)^{m+n-1}$$\end{document} and we obtain different results according to the number of zero coordinates in P and Q. Successively, we use our results to define the so called Hadamard fat grids, which are the result of the Hadamard product of two sets of collinear points with given multiplicities. The most important invariants of Hadamard fat grids, as minimal resolution, Waldschmidt constant and resurgence, are then computed.
引用
收藏
相关论文
共 50 条
  • [21] Hadamard products of algebraic functions
    Rivoal, T.
    Roques, J.
    [J]. JOURNAL OF NUMBER THEORY, 2014, 145 : 579 - 603
  • [22] HADAMARD PRODUCTS OF SCHLICHT FUNCTIONS
    ZALCMAN, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (03) : 544 - &
  • [23] On the asymptotic expansion of Hadamard products
    Sauer, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 186 : 243 - 250
  • [24] On Hadamard products of linear varieties
    Bocci, C.
    Calussi, G.
    Fatabbi, G.
    Lorenzini, A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (08)
  • [25] HADAMARD PRODUCTS OF CONVEX FUNCTIONS
    CIMA, JA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A304 - A304
  • [26] Warped products of Hadamard spaces
    Alexander, SB
    Bishop, RL
    [J]. MANUSCRIPTA MATHEMATICA, 1998, 96 (04) : 487 - 505
  • [27] Trigonometric integrals and Hadamard products
    Bragg, LR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (01): : 36 - 42
  • [28] HADAMARD PRODUCTS AND SCHWARTZ FUNCTIONS
    Hegde, Devadatta G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (10) : 4537 - 4541
  • [29] Hadamard products and binomial ideals
    Atar, Buesra
    Bhaskara, Kieran
    Cook, Adrian
    Da Silva, Sergio
    Harada, Megumi
    Rajchgot, Jenna
    Van Tuyl, Adam
    Wang, Runyue
    Yang, Jay
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [30] Geometric means and Hadamard products
    Feng, BQ
    Tonge, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (04): : 559 - 564