Hadamard Products of Symbolic Powers and Hadamard Fat Grids

被引:0
|
作者
I. Bahmani Jafarloo
C. Bocci
E. Guardo
G. Malara
机构
[1] Università degli studi di Catania,Dipartimento di Matematica e Informatica
[2] Università degli studi di Siena,Department of Information Engineering and Mathematics
[3] Pedagogical University of Cracow,Institute of Mathematics
来源
关键词
Hadamard products; fat grids; Waldschmidt constant; resurgence; 13F20; 13D02; 13C40; 14N20; 14M99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we address the question if, for points P,Q∈P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P, Q \in \mathbb {P}^{2}$$\end{document}, I(P)m⋆I(Q)n=I(P⋆Q)m+n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(P)^{m} \star I(Q)^{n}=I(P \star Q)^{m+n-1}$$\end{document} and we obtain different results according to the number of zero coordinates in P and Q. Successively, we use our results to define the so called Hadamard fat grids, which are the result of the Hadamard product of two sets of collinear points with given multiplicities. The most important invariants of Hadamard fat grids, as minimal resolution, Waldschmidt constant and resurgence, are then computed.
引用
收藏
相关论文
共 50 条
  • [1] Hadamard Products of Symbolic Powers and Hadamard Fat Grids
    Jafarloo, I. Bahmani
    Bocci, C.
    Guardo, E.
    Malara, G.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [2] Total positivity of sums, Hadamard products and Hadamard powers: Results and counterexamples
    Fallat, Shaun
    Johnson, Charles R.
    Sokal, Alan D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 242 - 259
  • [3] Majorizations of Hadamard products of matrix powers
    Visick, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 269 : 233 - 240
  • [4] On Hadamard powers of polynomials
    Jiří Gregor
    Jaroslav Tiŝer
    [J]. Mathematics of Control, Signals and Systems, 1998, 11 : 372 - 378
  • [5] On Hadamard powers of polynomials
    Gregor, J
    Tiser, J
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1998, 11 (04) : 372 - 378
  • [6] Total positivity of sums, Hadamard products and Hadamard powers: Results and counterexamples (vol 520, pg 242, 2017)
    Fallat, Shaun
    Johnson, Charles R.
    Sokal, Alan D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 613 : 393 - 396
  • [7] Comments on ‘On Hadamard powers of polynomials’
    Stanisław Białas
    Leokadia Białas-Cież
    [J]. Mathematics of Control, Signals, and Systems, 2017, 29
  • [8] Comments on 'On Hadamard powers of polynomials'
    Bialas, Stanislaw
    Bialas-Ciez, Leokadia
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (03)
  • [9] Hadamard powers and kernel perceptrons
    Damm, Tobias
    Dietrich, Nicolas
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 672 : 93 - 107
  • [10] Results on the Schur stability of the Hadamard powers and the Hadamard product of complex polynomials
    Gora, Michal
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1047 - 1054