Selectiongain: an R package for optimizing multi-stage selection

被引:0
|
作者
Xuefei Mi
H. Friedrich Utz
Albrecht E. Melchinger
机构
[1] University of Hohenheim,Institute of Plant Breeding, Seed Science and Population Genetics
来源
Computational Statistics | 2016年 / 31卷
关键词
Selection gain; Multivariate normal integral; Optimal allocations;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-stage selection is practised in numerous fields of the life sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and efforts, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} plays a central role. It can be calculated by integration of a truncated multivariate normal distribution. While mathematical formulas for calculating ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document}, the variance among the selected candidates, were developed a long time ago, solutions and software for numerical calculations were not available. We developed the R package selectiongain for efficient and precise calculation of ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document} for (i) a given matrix Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varSigma }^{*}$$\end{document} of correlations among the unobservable target character and the selection criteria and (ii) given coordinates Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf Q $$\end{document} of the truncation point or the selected fractions α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} in each stage. In addition, our software can be used for optimizing multi-stage selection programs under a given total budget and different costs of evaluating the candidates in each stage. Besides a detailed description of the functions of the software, the package is illustrated with two examples.
引用
收藏
页码:533 / 543
页数:10
相关论文
共 50 条
  • [31] Research on multi-stage partner selection model in logistic outsourcing
    Yin, Jian-Hua
    Wang, Zhao-Hua
    Binggong Xuebao/Acta Armamentarii, 2008, 29 (SUPPL.): : 101 - 105
  • [32] Multi-stage enrichment and basket trial designs with population selection
    Li, Wen
    Zhao, Jing
    Li, Xiaoyun
    Chen, Cong
    Beckman, Robert A.
    STATISTICS IN MEDICINE, 2019, 38 (29) : 5470 - 5485
  • [33] Multi-Stage Antenna Selection for Adaptive Beamforming in MIMO Radar
    Nosrati, Hamed
    Aboutanios, Elias
    Smith, David
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1374 - 1389
  • [34] Multi-stage selection strategy for genetic improvement of Marwari sheep
    Ganai, NA
    Yadav, SBS
    Kachwaha, RN
    Pant, KP
    Singh, VK
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2000, 70 (09): : 957 - 960
  • [35] On Approximate Nearest Neighbour Selection for Multi-Stage Dense Retrieval
    Macdonald, Craig
    Tonellotto, Nicola
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3318 - 3322
  • [36] A Multi-Stage Optimization Module for Logistic Outsourcing Partner Selection
    Yin, Jianhua
    Wang, Zhaohua
    Zhang, Bin
    PROCEEDINGS OF 2009 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATION, LOGISTICS AND INFORMATICS, 2009, : 620 - +
  • [37] Batch selection, assignment and sequencing in multi-stage multi-product processes
    Prasad, Pradeep
    Maravelias, Christos T.
    COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (06) : 1106 - 1119
  • [38] A Multi-stage Approach Aimed at Optimizing the Transshipment of Containers in a Maritime Container Terminal
    Lalla-Ruiz, Eduardo
    de Armas, Jesica
    Exposito-Izquierdo, Christopher
    Melian-Batista, Belen
    Marcos Moreno-Vega, J.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 255 - 262
  • [39] Optimizing a multi-stage production/inventory system by DC programming based approaches
    Hoai An Le Thi
    Duc Quynh Tran
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 57 (02) : 441 - 468
  • [40] OPTIMIZING INSPECTION STRATEGIES FOR MULTI-STAGE MANUFACTURING PROCESSES USING SIMULATION OPTIMIZATION
    Sarhangian, Vahid
    Vaghefi, Abolfazl
    Eskandari, Hamidreza
    Ardakani, Mostafa K.
    2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 1974 - +