Selectiongain: an R package for optimizing multi-stage selection

被引:0
|
作者
Xuefei Mi
H. Friedrich Utz
Albrecht E. Melchinger
机构
[1] University of Hohenheim,Institute of Plant Breeding, Seed Science and Population Genetics
来源
Computational Statistics | 2016年 / 31卷
关键词
Selection gain; Multivariate normal integral; Optimal allocations;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-stage selection is practised in numerous fields of the life sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and efforts, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} plays a central role. It can be calculated by integration of a truncated multivariate normal distribution. While mathematical formulas for calculating ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document}, the variance among the selected candidates, were developed a long time ago, solutions and software for numerical calculations were not available. We developed the R package selectiongain for efficient and precise calculation of ΔG(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta G(y)$$\end{document} and ψ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (y)$$\end{document} for (i) a given matrix Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varSigma }^{*}$$\end{document} of correlations among the unobservable target character and the selection criteria and (ii) given coordinates Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf Q $$\end{document} of the truncation point or the selected fractions α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} in each stage. In addition, our software can be used for optimizing multi-stage selection programs under a given total budget and different costs of evaluating the candidates in each stage. Besides a detailed description of the functions of the software, the package is illustrated with two examples.
引用
收藏
页码:533 / 543
页数:10
相关论文
共 50 条
  • [1] Selectiongain: an R package for optimizing multi-stage selection
    Mi, Xuefei
    Utz, H. Friedrich
    Melchinger, Albrecht E.
    COMPUTATIONAL STATISTICS, 2016, 31 (02) : 533 - 543
  • [2] Optimizing Resource Allocation for Multistage Selection in Plant Breeding with R Package Selectiongain
    Mi, Xuefei
    Utz, H. Friedrich
    Technow, Frank
    Melchinger, Albrecht E.
    CROP SCIENCE, 2014, 54 (04) : 1413 - 1418
  • [3] Optimizing multi-stage negotiations
    John, R
    Raith, MG
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2001, 45 (02) : 155 - 173
  • [4] Datatrack: An R package for managing data in a multi-stage experimental workflow
    Eichinski, Philip
    Roe, Paul
    PROCEEDINGS OF THE 2016 IEEE 12TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2016, : 147 - 154
  • [5] The R Package MAMS for Designing Multi-Arm Multi-Stage Clinical Trials
    Jaki, Thomas
    Pallmann, Philip
    Magirr, Dominic
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (04): : 1 - 25
  • [6] OPTIMIZING A MULTI-STAGE PRODUCTION PROCESS
    THOMAS, AB
    OPERATIONAL RESEARCH QUARTERLY, 1963, 14 (02) : 201 - 213
  • [7] OPTIMIZING A MULTI-STAGE PRODUCTION PROCESS
    THOMAS, AB
    OPERATIONAL RESEARCH QUARTERLY, 1963, 14 (01) : 201 - 213
  • [8] Optimizing Multi-Stage Project Portfolio Selection Considering Integrating Lifecycle and Interactions
    Qiu, Biaobiao
    Dou, Yajie
    Chen, Ziyi
    SYSTEMS, 2024, 12 (10):
  • [9] Optimizing multi-stage shrimp production systems
    Wang, JK
    Leiman, J
    AQUACULTURAL ENGINEERING, 2000, 22 (04) : 243 - 254
  • [10] MULTI-STAGE SELECTION FOR GENETIC GAIN
    YOUNG, SSY
    HEREDITY, 1964, 19 (01) : 131 - &