Bootstrap prediction intervals for autoregressive models fitted to non-autoregressive processes

被引:0
|
作者
Matteo Grigoletto
机构
[1] Università di Padova,Dipartimento di Scienze Statistiche
来源
关键词
Autoregressive processes; interval forecasts; bootstrap; robustness;
D O I
10.1007/BF03178936
中图分类号
学科分类号
摘要
The familiar Box and Jenkins method used to build prediction intervals for AR processes neglects the variability due to the estimation of model order and parameters. The purpose of the present paper is to assess the robustness of an approach that takes into account this additional uncertainty when the assumption that the underlying process is AR is not satisfied.
引用
收藏
相关论文
共 50 条
  • [1] Bootstrap-after-bootstrap prediction intervals for autoregressive models
    Kim, JH
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (01) : 117 - 128
  • [2] Bootstrap prediction intervals for autoregressive conditional duration models
    Pokhriyal, H.
    Balakrishna, N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (15) : 2930 - 2950
  • [3] Bootstrap prediction intervals for autoregressive time series
    Clements, Michael P.
    Kim, Jae H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3580 - 3594
  • [4] Hybrid Autoregressive and Non-Autoregressive Transformer Models for Speech Recognition
    Tian, Zhengkun
    Yi, Jiangyan
    Tao, Jianhua
    Zhang, Shuai
    Wen, Zhengqi
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 762 - 766
  • [5] Bootstrap prediction intervals for autoregressive models of unknown or infinite lag order
    Kim, JH
    [J]. JOURNAL OF FORECASTING, 2002, 21 (04) : 265 - 280
  • [6] Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes
    Cao, R
    FebreroBande, M
    GonzalezManteiga, W
    PradaSanchez, JM
    GarciaJurado, I
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (03) : 961 - 978
  • [7] Robust bootstrap prediction intervals for univariate and multivariate autoregressive time series models
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (05) : 1179 - 1202
  • [8] Bootstrapping prediction intervals for autoregressive models
    Clements, MP
    Taylor, N
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2001, 17 (02) : 247 - 267
  • [9] Improving Autoregressive NMT with Non-Autoregressive Model
    Zhou, Long
    Zhang, Jiajun
    Zong, Chengqing
    [J]. WORKSHOP ON AUTOMATIC SIMULTANEOUS TRANSLATION CHALLENGES, RECENT ADVANCES, AND FUTURE DIRECTIONS, 2020, : 24 - 29
  • [10] Bootstrap prediction regions for multivariate autoregressive processes
    Grigoletto M.
    [J]. Statistical Methods and Applications, 2005, 14 (2): : 179 - 207