Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes

被引:32
|
作者
Cao, R
FebreroBande, M
GonzalezManteiga, W
PradaSanchez, JM
GarciaJurado, I
机构
[1] UNIV A CORUNA, FAC INFORMAT, DEPT MATEMAT, LA CORUNA 15071, SPAIN
[2] UNIV SANTIAGO COMPOSTELA, FAC MATEMAT, DEPT ESTADIST & INVEST OPERAT, SANTIAGO DE COMPOSTELA 15171, SPAIN
关键词
smoothed bootstrap; time series;
D O I
10.1080/03610919708813420
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents consistent and fast bootstrap methods for constructing nonparametric prediction intervals for autoregressive processes. These methods are compared, in a simulation study, with the Box-Jenkins approach and Thombs-Schucany's bootstrap method.
引用
收藏
页码:961 / 978
页数:18
相关论文
共 35 条