Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models

被引:1
|
作者
Hang Ha
Chinh Luu
Quynh Duy Bui
Duy-Hoa Pham
Tung Hoang
Viet-Phuong Nguyen
Minh Tuan Vu
Binh Thai Pham
机构
[1] National University of Civil Engineering,Departement of Geodesy and Geomatics
[2] National University of Civil Engineering,Faculty of Hydraulic Engineering
[3] National University of Civil Engineering,Faculty of Bridges and Roads
[4] University of Transport Technology,undefined
来源
Natural Hazards | 2021年 / 109卷
关键词
Flash flood susceptibility; Transportation; Highway; Hybrid machine learning models; Flood risk management; Vietnam;
D O I
暂无
中图分类号
学科分类号
摘要
Flash flood is one of the most common natural hazards affecting many mountainous areas. Previous studies explored flash flood susceptibility models; however, there is still a lack of case studies in the transport sector. This paper aimed to develop advanced hybrid machine learning (ML) algorithms for flash flood susceptibility modeling and mapping using data from the road network National Highway 6 in Hoa Binh province, Vietnam. A single ML model of reduced error pruning trees (REPT) and four hybrid ML models of Decorate-REPT, AdaBoostM1-REPT, Bagging-REPT, and MultiBoostAB-REPT were applied to develop flash flood susceptibility maps. Field surveys were conducted about the flash flood locations on the 115-km route length of the National Highway 6 in 2017, 2018, and 2019 flood events. This study used 88 flash flood locations and 14 flood conditioning factors to construct and validate the proposed models. Statistical metrics, including sensitivity, specificity, accuracy, root mean square error, and area under the receiver operating characteristic curve, were applied to evaluate the models’ performance and accuracy. The DCREPT model showed the best performance (AUC = 0.988) among the training models and had the highest prediction accuracy (AUC = 0.991) among the testing models. We found that 12,572 ha (Decorate-REPT), 9564 ha (AdaBoostM1-REPT), 11,954 ha (Bagging-REPT), 14,432 ha (MultiBoostAB-REPT), and 17,660 ha (REPT) of the 3-km buffer area of the highway are in the high- and very high-flash-flood-susceptibility areas. The proposed methodology could be potentially generalized to other transportation routes in mountainous areas to generate flash flood susceptibility prediction maps.
引用
收藏
页码:1247 / 1270
页数:23
相关论文
共 50 条
  • [21] A machine learning approach in spatial predicting of landslides and flash flood susceptible zones for a road network
    Hang Ha
    Quynh Duy Bui
    Thanh Dong Khuc
    Dinh Trong Tran
    Binh Thai Pham
    Sy Hung Mai
    Lam Phuong Nguyen
    Chinh Luu
    Modeling Earth Systems and Environment, 2022, 8 : 4341 - 4357
  • [22] Modeling flood susceptibility zones using hybrid machine learning models of an agricultural dominant landscape of India
    Satish Kumar Saini
    Susanta Mahato
    Deep Narayan Pandey
    Pawan Kumar Joshi
    Environmental Science and Pollution Research, 2023, 30 : 97463 - 97485
  • [23] Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets
    Liu, Jun
    Wang, Jiyan
    Xiong, Junnan
    Cheng, Weiming
    Sun, Huaizhang
    Yong, Zhiwei
    Wang, Nan
    REMOTE SENSING, 2021, 13 (23)
  • [24] Modeling flood susceptibility zones using hybrid machine learning models of an agricultural dominant landscape of India
    Saini, Satish Kumar
    Mahato, Susanta
    Pandey, Deep Narayan
    Joshi, Pawan Kumar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (43) : 97463 - 97485
  • [25] Flood susceptibility modelling using advanced ensemble machine learning models
    Abu Reza Md Towfiqul Islam
    Swapan Talukdar
    Susanta Mahato
    Sonali Kundu
    Kutub Uddin Eibek
    Quoc Bao Pham
    Alban Kuriqi
    Nguyen Thi Thuy Linh
    Geoscience Frontiers, 2021, (03) : 66 - 83
  • [26] Flood susceptibility modelling using advanced ensemble machine learning models
    Islam, Abu Reza Md Towfiqul
    Talukdar, Swapan
    Mahato, Susanta
    Kundu, Sonali
    Eibek, Kutub Uddin
    Quoc Bao Pham
    Kuriqi, Alban
    Nguyen Thi Thuy Linh
    GEOSCIENCE FRONTIERS, 2021, 12 (03)
  • [27] Flood susceptibility modelling using advanced ensemble machine learning models
    Abu Reza Md Towfiqul Islam
    Swapan Talukdar
    Susanta Mahato
    Sonali Kundu
    Kutub Uddin Eibek
    Quoc Bao Pham
    Alban Kuriqi
    Nguyen Thi Thuy Linh
    Geoscience Frontiers, 2021, 12 (03) : 66 - 83
  • [28] Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms
    Band, Shahab S.
    Janizadeh, Saeid
    Pal, Subodh Chandra
    Saha, Asish
    Chakrabortty, Rabin
    Melesse, Assefa M.
    Mosavi, Amirhosein
    REMOTE SENSING, 2020, 12 (21) : 1 - 23
  • [29] Susceptibility mapping of groundwater salinity using machine learning models
    Amirhosein Mosavi
    Farzaneh Sajedi Hosseini
    Bahram Choubin
    Fereshteh Taromideh
    Marzieh Ghodsi
    Bijan Nazari
    Adrienn A. Dineva
    Environmental Science and Pollution Research, 2021, 28 : 10804 - 10817
  • [30] Susceptibility mapping of groundwater salinity using machine learning models
    Mosavi, Amirhosein
    Sajedi Hosseini, Farzaneh
    Choubin, Bahram
    Taromideh, Fereshteh
    Ghodsi, Marzieh
    Nazari, Bijan
    Dineva, Adrienn A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (09) : 10804 - 10817