Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer

被引:0
|
作者
Lian Zhou
Guo-jin Wang
机构
[1] Zhejiang University,Institute of Computer Graphics and Image Processing
[2] Zhejiang University,State Key Lab of CAD & CG
关键词
Bézier curves; Multi-degree reduction; Divide and conquer; O29;
D O I
暂无
中图分类号
学科分类号
摘要
We decompose the problem of the optimal multi-degree reduction of Bézier curves with corners constraint into two simpler subproblems, namely making high order interpolations at the two endpoints without degree reduction, and doing optimal degree reduction without making high order interpolations at the two endpoints. Further, we convert the second subproblem into multi-degree reduction of Jacobi polynomials. Then, we can easily derive the optimal solution using orthonormality of Jacobi polynomials and the least square method of unequally accurate measurement. This method of ‘divide and conquer’ has several advantages including maintaining high continuity at the two endpoints of the curve, doing multi-degree reduction only once, using explicit approximation expressions, estimating error in advance, low time cost, and high precision. More importantly, it is not only deduced simply and directly, but also can be easily extended to the degree reduction of surfaces. Finally, we present two examples to demonstrate the effectiveness of our algorithm.
引用
收藏
页码:577 / 582
页数:5
相关论文
共 50 条