Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

被引:0
|
作者
Zafer Aydin
Yucel Altunbasak
Mark Borodovsky
机构
[1] Georgia Institute of Technology,School of Electrical and Computer Engineering
[2] Georgia Institute of Technology,School of Biology, the Wallace H. Coulter Department of Biomedical Engineering and the Center for Bioinformatics and Computational Biology
来源
关键词
Hide State; Internal Position; Amino Acid Pair; Proximal Position; Conversion Rule;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
    Aydin, Zafer
    Altunbasak, Yucel
    Borodovsky, Mark
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [2] Combining segmental semi-Markov models with neural networks for protein secondary structure prediction
    Bidargaddi, Niranjan P.
    Chetty, Madhu
    Kamruzzaman, Joarder
    [J]. NEUROCOMPUTING, 2009, 72 (16-18) : 3943 - 3950
  • [3] Single-sequence protein structure prediction using supervised transformer protein language models
    Wang, Wenkai
    Peng, Zhenling
    Yang, Jianyi
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (12): : 804 - +
  • [4] Single-sequence protein structure prediction by integrating protein language models
    Jing, Xiaoyang
    Wu, Fandi
    Luo, Xiao
    Xu, Jinbo
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (13)
  • [5] Using Hidden Semi-Markov Models for effective online failure prediction
    Salfner, Felix
    Malek, Miroslaw
    [J]. SRDS 2007: 26TH IEEE INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, : 161 - +
  • [6] Single-sequence protein structure prediction using supervised transformer protein language models
    Wenkai Wang
    Zhenling Peng
    Jianyi Yang
    [J]. Nature Computational Science, 2022, 2 : 804 - 814
  • [7] Hidden semi-Markov models
    Yu, Shun-Zheng
    [J]. ARTIFICIAL INTELLIGENCE, 2010, 174 (02) : 215 - 243
  • [8] Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
    Adams, Stephen
    Beling, Peter A.
    Cogill, Randy
    [J]. IEEE ACCESS, 2016, 4 : 1642 - 1657
  • [9] Evolving Hidden Markov Models for protein secondary structure prediction
    Won, KJ
    Hamelryck, T
    Prügel-Bennett, A
    Krogh, A
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 33 - 40
  • [10] ACTIVITY RECOGNITION USING LOGICAL HIDDEN SEMI-MARKOV MODELS
    Zha, Ya-Bing
    Yue, Shi-Guang
    Yin, Quan-Jun
    Liu, Xiao-Cheng
    [J]. 2013 10TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2013, : 77 - 84