Intrinsic finite element methods for the computation of fluxes for Poisson’s equation

被引:0
|
作者
P. G. Ciarlet
P. Ciarlet
S. A. Sauter
C. Simian
机构
[1] City University of Hong Kong,Department of Mathematics
[2] Laboratoire POEMS,Institut für Mathematik
[3] UMR 7231 CNRS/ENSTA/INRIA,Department of Computer Science
[4] ENSTA ParisTech,undefined
[5] 828,undefined
[6] Boulevard des Maréchaux,undefined
[7] Universität Zürich,undefined
[8] University of Chicago,undefined
来源
Numerische Mathematik | 2016年 / 132卷
关键词
Elliptic boundary value problems; Conforming and non-conforming finite element spaces; Intrinsic formulation; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
引用
下载
收藏
页码:433 / 462
页数:29
相关论文
共 50 条
  • [31] Solution of Poisson's equation for finite systems using plane-wave methods
    Castro, A
    Rubio, A
    Stott, MJ
    CANADIAN JOURNAL OF PHYSICS, 2003, 81 (10) : 1151 - 1164
  • [32] A cut-cell finite element method for Poisson's equation on arbitrary planar domains
    Pande, Sushrut
    Papadopoulos, Panayiotis
    Babuska, Ivo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 383
  • [33] A robust cut-cell finite element method for Poisson's equation in three dimensions
    Li, Donghao
    Papadopoulos, Panayiotis
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024,
  • [34] Finite Element Method to Solve Poisson's Equation Using Curved Quadratic Triangular Elements
    Shylaja, G.
    Venkatesh, B.
    Naidu, Kesavulu, V
    INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND MANUFACTURING APPLICATIONS (ICONAMMA-2018), 2019, 577
  • [35] Reliability of finite element methods for the numerical computation of waves
    Univ of Maryland at College Park, College Park, United States
    Adv Eng Software, 7 (417-424):
  • [36] Reliability of finite element methods for the numerical computation of waves
    Ihlenburg, F
    Babuska, I
    Sauter, S
    ADVANCES IN ENGINEERING SOFTWARE, 1997, 28 (07) : 417 - 424
  • [37] Mixed finite element methods for the Rosenau equation
    Atouani, Noureddine
    Ouali, Yousra
    Omrani, Khaled
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 393 - 420
  • [38] FINITE ELEMENT METHODS FOR THE TRANSPORT EQUATION.
    Lesaint, P.
    Revue Francaise d'Automatique Informatique Recherche Operationnelle, 1974, 8 : 67 - 93
  • [39] Finite element methods for the parabolic equation with interfaces
    Dougalis, VA
    Kampanis, NA
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (01) : 55 - 88
  • [40] Mixed finite element methods for the Rosenau equation
    Noureddine Atouani
    Yousra Ouali
    Khaled Omrani
    Journal of Applied Mathematics and Computing, 2018, 57 : 393 - 420