Intrinsic finite element methods for the computation of fluxes for Poisson’s equation

被引:0
|
作者
P. G. Ciarlet
P. Ciarlet
S. A. Sauter
C. Simian
机构
[1] City University of Hong Kong,Department of Mathematics
[2] Laboratoire POEMS,Institut für Mathematik
[3] UMR 7231 CNRS/ENSTA/INRIA,Department of Computer Science
[4] ENSTA ParisTech,undefined
[5] 828,undefined
[6] Boulevard des Maréchaux,undefined
[7] Universität Zürich,undefined
[8] University of Chicago,undefined
来源
Numerische Mathematik | 2016年 / 132卷
关键词
Elliptic boundary value problems; Conforming and non-conforming finite element spaces; Intrinsic formulation; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
引用
收藏
页码:433 / 462
页数:29
相关论文
共 50 条
  • [1] Intrinsic finite element methods for the computation of fluxes for Poisson's equation
    Ciarlet, P. G.
    Ciarlet, P., Jr.
    Sauter, S. A.
    Simian, C.
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (03) : 433 - 462
  • [2] The finite volume element methods for Poisson equation based on Adini's element
    Yu, Changhua
    Wang, Yanhe
    Li, Yonghai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5537 - 5549
  • [3] Combinations of collocation and finite-element methods for Poisson's equation
    Hu, Hsin-Yun
    Li, Zi-Cai
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (12) : 1831 - 1853
  • [4] ON FINITE-ELEMENT METHODS FOR THE EULER-POISSON-DARBOUX EQUATION
    GENIS, AM
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) : 1080 - 1106
  • [5] A Comparison of Finite Element Error Bounds for Poisson's Equation
    Barnhill, R.E.
    Brown, J.H.
    Mitchell, A.R.
    [J]. 1600, Oxford University Press (01):
  • [6] CONNECTING METHODS OF FINITE-ELEMENT AND INTEGRAL-EQUATION COMPUTATION
    CHAUDONNERET, M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1977, 285 (04): : 65 - 67
  • [7] HYPOCOERCIVITY-COMPATIBLE FINITE ELEMENT METHODS FOR THE LONG-TIME COMPUTATION OF KOLMOGOROV'S EQUATION
    Georgoulis, Emmanuil H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (01) : 173 - 194
  • [8] Symbolic Computation and Finite Element Methods
    Pillwein, Veronika
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015), 2015, 9301 : 376 - 390
  • [9] Adaptive Finite Element Methods with Inexact Solvers for the Nonlinear Poisson-Boltzmann Equation
    [J]. Holst, M. (mholst@math.ucsd.edu), 2013, Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany (91):
  • [10] Combination of the finite and the boundary element methods for an external boundary value problem of the Poisson equation
    Shigeta, T
    Harayama, T
    Shirota, K
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1999, 22 (06) : 777 - 783