The zeros of q-shift difference polynomials of meromorphic functions

被引:0
|
作者
Junfeng Xu
Xiaobin Zhang
机构
[1] Wuyi University,Department of Mathematics
[2] Civil Aviation University of China,Department of Mathematics
关键词
difference equation; meromorphic function; logarithmic order; Nevanlinna theory; difference polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the value distribution of difference polynomials f(z)nf(qz+c) and fn(z)+a[f(qz+c)−f(z)] related to two well-known differential polynomials, where f(z) is a meromorphic function with finite logarithmic order.
引用
收藏
相关论文
共 50 条
  • [1] The zeros of q-shift difference polynomials of meromorphic functions
    Xu, Junfeng
    Zhang, Xiaobin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 10
  • [2] The Zeros and Nevanlinna Deficiencies for Some q-Shift Difference Differential Polynomials of Meromorphic Functions
    Xiumin ZHENG
    Hongyan XU
    [J]. Journal of Mathematical Research with Applications, 2022, 42 (01) : 31 - 40
  • [3] Uniqueness and zeros of q-shift difference polynomials
    Liu, Kai
    Liu, Xin-Ling
    Cao, Ting-Bin
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (03): : 301 - 310
  • [4] Properties of q-shift difference-differential polynomials of meromorphic functions
    Wang, Xin-Li
    Xu, Hong-Yan
    Zhan, Tang-Sen
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [5] Uniqueness and zeros of q-shift difference polynomials
    KAI LIU
    XIN-LING LIU
    TING-BIN CAO
    [J]. Proceedings - Mathematical Sciences, 2011, 121 : 301 - 310
  • [6] Properties of q-shift difference-differential polynomials of meromorphic functions
    Xin-Li Wang
    Hong-Yan Xu
    Tang-Sen Zhan
    [J]. Advances in Difference Equations, 2014
  • [7] UNIQUENESS OF q-SHIFT DIFFERENCE POLYNOMIALS OF MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION
    Dyavanal, Renukadevi S.
    Desai, Rajalaxmi, V
    [J]. MATHEMATICA BOHEMICA, 2020, 145 (03): : 241 - 253
  • [8] Zeros and shared one value of q-shift difference polynomials
    Q. Zhao
    J. Zhang
    [J]. Journal of Contemporary Mathematical Analysis, 2015, 50 : 63 - 69
  • [9] Zeros and Shared One Value of q-shift Difference Polynomials
    Zhao, Q.
    Zhang, J.
    [J]. Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences, 2015, 50 (02): : 63 - 69
  • [10] Uniqueness of differential q-shift difference polynomials of entire functions
    Mathai, Madhura M.
    Manjalapur, Vinayak V.
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (04): : 1117 - 1127