Properties of q-shift difference-differential polynomials of meromorphic functions

被引:0
|
作者
Xin-Li Wang
Hong-Yan Xu
Tang-Sen Zhan
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Jingdezhen Ceramic Institute,Department of Informatics and Engineering
关键词
-shift; uniqueness; meromorphic function; zero order;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the zeros of the q-shift difference-differential polynomials [P(f)∏j=1df(qjz+cj)sj](k)−α(z) and (P(f)∏j=1d[f(qjz+cj)−f(z)]sj)(k)−α(z), where P(f) is a nonzero polynomial of degree n, qj,cj∈C∖{0} (j=1,…,d) are constants, n,d,sj(j=1,…,d)∈N+ and α(z) is a small function of f. The results of this paper are an extension of the previous theorems given by Chen and Chen and Qi. We also investigate the value sharing for q-shift difference polynomials of entire functions and obtain some results which extend the recent theorem given by Liu, Liu and Cao.
引用
收藏
相关论文
共 50 条
  • [1] Properties of q-shift difference-differential polynomials of meromorphic functions
    Wang, Xin-Li
    Xu, Hong-Yan
    Zhan, Tang-Sen
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [2] The zeros of q-shift difference polynomials of meromorphic functions
    Junfeng Xu
    Xiaobin Zhang
    [J]. Advances in Difference Equations, 2012
  • [3] The zeros of q-shift difference polynomials of meromorphic functions
    Xu, Junfeng
    Zhang, Xiaobin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012, : 1 - 10
  • [4] The Zeros and Nevanlinna Deficiencies for Some q-Shift Difference Differential Polynomials of Meromorphic Functions
    Xiumin ZHENG
    Hongyan XU
    [J]. Journal of Mathematical Research with Applications, 2022, 42 (01) : 31 - 40
  • [5] Uniqueness of differential q-shift difference polynomials of entire functions
    Mathai, Madhura M.
    Manjalapur, Vinayak V.
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (04): : 1117 - 1127
  • [6] Uniqueness of Difference-Differential Polynomials of Meromorphic Functions
    R. S. Dyavanal
    M. M. Mathai
    [J]. Ukrainian Mathematical Journal, 2019, 71 : 1032 - 1042
  • [7] Uniqueness of differential q-shift difference polynomials of entire functions
    Madhura M. Mathai
    Vinayak V. Manjalapur
    [J]. The Journal of Analysis, 2021, 29 : 1117 - 1127
  • [8] Uniqueness of Difference-Differential Polynomials of Meromorphic Functions
    Dyavanal, R. S.
    Mathai, M. M.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (07) : 1032 - 1042
  • [9] UNIQUENESS OF q-SHIFT DIFFERENCE POLYNOMIALS OF MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION
    Dyavanal, Renukadevi S.
    Desai, Rajalaxmi, V
    [J]. MATHEMATICA BOHEMICA, 2020, 145 (03): : 241 - 253
  • [10] UNIQUENESS OF q-SHIFT DIFFERENCE-DIFFERENTIAL POLYNOMIAL OF MEROMORPHIC AND ENTIRE FUNCTION WITH ZERO-ORDER
    Nagarjun, V.
    Husna, V.
    Veena
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (02): : 247 - 263