We discuss applications of generating functions for colored graphs to asymptotic expansions of matrix integrals. The described technique provides an asymptotic expansion of the Kontsevich integral. We prove that this expansion is a refinement of the Kontsevich expansion, which is the sum over the set of classes of isomorphic ribbon graphs. This yields a proof of Kontsevich’s results that is independent of the Feynman graph technique.
机构:Laboratoire Interdisciplinaire des Sciences du Numérique,Department of Computer and Network Engineering, Graduate School of Informatics and Engineering
Jie Hu
Hao Li
论文数: 0引用数: 0
h-index: 0
机构:Laboratoire Interdisciplinaire des Sciences du Numérique,Department of Computer and Network Engineering, Graduate School of Informatics and Engineering
Hao Li
Shun-ichi Maezawa
论文数: 0引用数: 0
h-index: 0
机构:Laboratoire Interdisciplinaire des Sciences du Numérique,Department of Computer and Network Engineering, Graduate School of Informatics and Engineering
Shun-ichi Maezawa
Journal of Combinatorial Optimization,
2022,
44
: 154
-
171
机构:
Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
Espig, Lisa
论文数: 引用数:
h-index:
机构:
Frieze, Alan
Krivelevich, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, IsraelCarnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA