Development and validation of prognostic models for anal cancer outcomes using distributed learning: protocol for the international multi-centre atomCAT2 study

被引:5
|
作者
Theophanous, Stelios [1 ]
Lonne, Per-Ivar [2 ]
Choudhury, Ananya [3 ,4 ]
Berbee, Maaike [3 ,4 ]
Dekker, Andre [3 ,4 ]
Dennis, Kristopher [5 ,6 ]
Dewdney, Alice [7 ]
Gambacorta, Maria Antonietta [8 ]
Gilbert, Alexandra [1 ]
Guren, Marianne Gronlie [9 ,10 ]
Holloway, Lois [11 ,12 ]
Jadon, Rashmi [13 ]
Kochhar, Rohit [14 ]
Mohamed, Ahmed Allam [15 ]
Muirhead, Rebecca [16 ]
Pares, Oriol [17 ]
Raszewski, Lukasz [18 ]
Roy, Rajarshi [19 ]
Scarsbrook, Andrew [1 ,20 ]
Sebag-Montefiore, David [1 ]
Spezi, Emiliano [21 ]
Spindler, Karen-Lise Garm [22 ]
van Triest, Baukelien [23 ]
Vassiliou, Vassilios [24 ]
Malinen, Eirik [2 ]
Wee, Leonard [3 ,4 ]
Appelt, Ane L. [1 ,20 ]
机构
[1] Univ Leeds, Leeds Inst Med Res St Jamess, Leeds, England
[2] Oslo Univ Hosp, Dept Med Phys, Oslo, Norway
[3] Maastricht Univ, Maastricht Univ Med Ctr, MAASTRO Dept Radiotherapy, P Debyelaan 25, NL-6229 Maastricht, Netherlands
[4] Maastricht Univ Med Ctr, P Debyelaan 25, NL-6229 Maastricht, Netherlands
[5] Ottawa Hosp, Ottawa, ON, Canada
[6] Univ Ottawa, Ottawa, ON, Canada
[7] Weston Pk Hosp, Sheffield, England
[8] Univ Cattolica S Cuore, Univ Cattolica SCuore, Rome, Italy
[9] Oslo Univ Hosp, Univ Oslo, Dept Oncol, Oslo, Norway
[10] Univ Oslo, Inst Clin Med, Oslo, Norway
[11] Ingham Res Inst, Liverpool, NSW, Australia
[12] Liverpool Hosp, Liverpool, NSW, Australia
[13] Addenbrookes Hosp, Cambridge, England
[14] Christie NHS Fdn Trust, Manchester, England
[15] Rhein Westfal TH Aachen, Med Ctr, Aachen, Germany
[16] Oxford Univ Hosp NHS Fdn Trust, Oxford, England
[17] Champalimaud Fdn, Lisbon, Portugal
[18] Greater Poland Canc Ctr, Poznan, Poland
[19] Hull Univ Teaching Hosp NHS Trust, Kingston Upon Hull, England
[20] Leeds Teaching Hosp NHS Trust, Leeds, England
[21] Cardiff Univ, Cardiff, Wales
[22] Aarhus Univ Hosp, Aarhus, Denmark
[23] Netherlands Canc Inst Antoni van Leeuwenhoek NKI A, Amsterdam, Netherlands
[24] Bank Cyprus Oncol Ctr, Nicosia, Cyprus
基金
荷兰研究理事会;
关键词
Anal cancer; Squamous cell carcinoma; Chemoradiotherapy; Distributed learning; Federated learning; outcome modelling; Overall survival; Locoregional control; Freedom from distant metastasis; SQUAMOUS-CELL CARCINOMA; CLINICAL-PRACTICE GUIDELINES; ANUS ACT II; BREAST-CANCER; GUIDED BRACHYTHERAPY; PREDICTION MODEL; SURVIVAL; IMPUTATION; RECURRENCE; DIAGNOSIS;
D O I
10.1186/s41512-022-00128-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes conferred by state-of-the-art chemoradiotherapy, further improving disease control and reducing toxicity has proven challenging. Developing and validating prognostic models using routinely collected data may provide new insights for treatment development and selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient data, especially from single centres, to develop and validate robust models. Moreover, multi-centre model development is hampered by ethical barriers and data protection regulations that often limit accessibility to patient data. Distributed (or federated) learning allows models to be developed using data from multiple centres without any individual-level patient data leaving the originating centre, therefore preserving patient data privacy. This work builds on the proof-of-concept three-centre atomCAT1 study and describes the protocol for the multi-centre atomCAT2 study, which aims to develop and validate robust prognostic models for three clinically important outcomes in anal cancer following chemoradiotherapy.Methods This is a retrospective multi-centre cohort study, investigating overall survival, locoregional control and freedom from distant metastasis after primary chemoradiotherapy for anal squamous cell carcinoma. Patient data will be extracted and organised at each participating radiotherapy centre (n = 18). Candidate prognostic factors have been identified through literature review and expert opinion. Summary statistics will be calculated and exchanged between centres prior to modelling. The primary analysis will involve developing and validating Cox proportional hazards models across centres for each outcome through distributed learning. Outcomes at specific timepoints of interest and factor effect estimates will be reported, allowing for outcome prediction for future patients.Discussion The atomCAT2 study will analyse one of the largest available cross-institutional cohorts of patients with anal cancer treated with chemoradiotherapy. The analysis aims to provide information on current international clinical practice outcomes and may aid the personalisation and design of future anal cancer clinical trials through contributing to a better understanding of patient risk stratification.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] Predicting outcomes in anal cancer patients using multi-centre data and distributed learning - A proof-of-concept study
    Choudhury, Ananya
    Theophanous, Stelios
    Lonne, Per-Ivar
    Samuel, Robert
    Guren, Marianne Gronlie
    Berbee, Maaike
    Brown, Peter
    Lilley, John
    van Soest, Johan
    Dekker, Andre
    Gilbert, Alexandra
    Malinen, Eirik
    Wee, Leonard
    Appelt, Ane L.
    RADIOTHERAPY AND ONCOLOGY, 2021, 159 : 183 - 189
  • [2] Lung Cancer Prediction Using Deep Learning Software: Validation on Independent Multi-Centre Data
    Peschl, H.
    Han, D.
    Van Ooijen, P.
    Oudkerk, M.
    Dorrius, M.
    Rook, M.
    Vliegenthart, R.
    Heusse, C. P.
    Batora, N.
    Kauczor, H.
    Da Silva, C.
    Von Stackelberg, O.
    Rubtsov, R.
    Wielputz, M.
    Ather, S.
    Tsakok, M.
    Arteta, C.
    Pickup, L.
    Hussain, S.
    Hickes, W.
    Novotny, P.
    Santos, C.
    Fay, E.
    Declerck, J.
    Potesi, V.
    Kadir, T.
    Gleeson, F.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S428 - S428
  • [3] Development and Validation of Treatment-Specific Prediction Models for Critical Weight Loss in Nasopharyngeal Carcinoma Patients - A Multi-Centre Study
    SUN, J.
    Lam, S.
    Teng, X.
    Zhang, J.
    Ma, Z.
    Huang, Y.
    Xiao, H.
    Liu, C.
    Li, W.
    Han, X.
    Lee, F.
    Yip, W.
    Cheung, A.
    Lee, H.
    Au, K.
    Cai, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E848 - E848
  • [4] The COLO-COHORT (Colorectal Cancer Cohort) study: Protocol for a multi-centre, observational research study and development of a consent-for-contact research platform
    Hampton, James S.
    Koo, Sara
    Dobson, Christina
    Stewart, Christopher J.
    Neilson, Laura J.
    Montague, Kyle
    Mitra, Suparna
    Whelpton, John
    Addison, Caroline
    Kelly, Phil
    Rushton, Stephen
    Hull, Mark A.
    Sharp, Linda
    Rees, Colin J.
    COLORECTAL DISEASE, 2022, 24 (10) : 1216 - 1226
  • [5] An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
    Cai, Lishan
    Lambregts, Doenja M. J.
    Beets, Geerard L.
    Mass, Monique
    Pooch, Eduardo H. P.
    Guerendel, Corentin
    Beets-Tan, Regina G. H.
    Benson, Sean
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [6] Development and validation of survival prognostic models for head and neck cancer patients using machine learning and dosiomics and CT radiomics features: a multicentric study
    Mansouri, Zahra
    Salimi, Yazdan
    Amini, Mehdi
    Hajianfar, Ghasem
    Oveisi, Mehrdad
    Shiri, Isaac
    Zaidi, Habib
    RADIATION ONCOLOGY, 2024, 19 (01)
  • [7] Development and validation of survival prognostic models for head and neck cancer patients using machine learning and dosiomics and CT radiomics features: a multicentric study
    Zahra Mansouri
    Yazdan Salimi
    Mehdi Amini
    Ghasem Hajianfar
    Mehrdad Oveisi
    Isaac Shiri
    Habib Zaidi
    Radiation Oncology, 19
  • [8] A multi-centre prospective development study evaluating focal therapy using high intensity focused ultrasound for localised prostate cancer: The INDEX study
    Dickinson, L.
    Ahmed, H. U.
    Kirkham, A. P.
    Allen, C.
    Freeman, A.
    Barber, J.
    Hindley, R. G.
    Leslie, T.
    Ogden, C.
    Persad, R.
    Winkler, M. H.
    Emberton, M.
    CONTEMPORARY CLINICAL TRIALS, 2013, 36 (01) : 68 - 80
  • [9] Study protocol: multi-centre, randomised controlled clinical trial exploring stromal targeting in locally advanced pancreatic cancer; STARPAC2
    Kocher, Hemant M.
    Sasieni, Peter
    Corrie, Pippa
    McNamara, Mairead G.
    Sarker, Debashis
    Froeling, Fieke E. M.
    Christie, Alan
    Gillmore, Roopinder
    Khan, Khurum
    Propper, David
    BMC CANCER, 2025, 25 (01)
  • [10] The Ottawa SAH search algorithms: protocol for a multi- centre validation study of primary subarachnoid hemorrhage prediction models using health administrative data (the SAHepi prediction study protocol)
    S. W. English
    L. McIntyre
    V. Saigle
    M. Chassé
    D. A. Fergusson
    A. F. Turgeon
    F. Lauzier
    D. Griesdale
    A. Garland
    R. Zarychanski
    A. Algird
    C. van Walraven
    BMC Medical Research Methodology, 18