An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study

被引:8
|
作者
Cai, Lishan [1 ,2 ]
Lambregts, Doenja M. J. [1 ,2 ]
Beets, Geerard L. [2 ,3 ]
Mass, Monique [1 ,2 ]
Pooch, Eduardo H. P. [1 ,2 ]
Guerendel, Corentin [1 ,2 ]
Beets-Tan, Regina G. H. [1 ,2 ]
Benson, Sean [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, P Debyelaan 25, NL-6202 AZ Maastricht, Netherlands
[3] Netherlands Canc Inst, Dept Surg, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
SEGMENTATION; OUTCOMES;
D O I
10.1038/s41698-024-00516-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model, for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical settings, particularly for EMVI classification.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study (vol 8,17,2024)
    Cai, Lishan
    Lambregts, Doenja M. J.
    Beets, Geerard L.
    Maas, Monique
    Pooch, Eduardo H. P.
    Guerendel, Corentin
    Beets-Tan, Regina G. H.
    Benson, Sean
    NPJ PRECISION ONCOLOGY, 2025, 9 (01)
  • [2] Lung Cancer Prediction Using Deep Learning Software: Validation on Independent Multi-Centre Data
    Peschl, H.
    Han, D.
    Van Ooijen, P.
    Oudkerk, M.
    Dorrius, M.
    Rook, M.
    Vliegenthart, R.
    Heusse, C. P.
    Batora, N.
    Kauczor, H.
    Da Silva, C.
    Von Stackelberg, O.
    Rubtsov, R.
    Wielputz, M.
    Ather, S.
    Tsakok, M.
    Arteta, C.
    Pickup, L.
    Hussain, S.
    Hickes, W.
    Novotny, P.
    Santos, C.
    Fay, E.
    Declerck, J.
    Potesi, V.
    Kadir, T.
    Gleeson, F.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S428 - S428
  • [3] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [4] Effect of Intensity Standardization on Deep Learning for WML Segmentation in Multi-Centre FLAIR MRI
    Ghazvanchahi, Abdollah
    Maralani, Pejman Jahbedar
    Moody, Alan R.
    Khademi, April
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1923 - 1940
  • [5] Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI
    Zhang, Xiao-Yan
    Wang, Lin
    Zhu, Hai-Tao
    Li, Zhong-Wu
    Ye, Meng
    Li, Xiao-Ting
    Shi, Yan-Jie
    Zhu, Hui-Ci
    Sun, Ying-Shi
    RADIOLOGY, 2020, 296 (01) : 56 - 64
  • [6] Head movement dynamics in dystonia: a multi-centre retrospective study using visual perceptive deep learning
    Peach, Robert
    Friedrich, Maximilian
    Fronemann, Lara
    Muthuraman, Muthuraman
    Schreglmann, Sebastian R.
    Zeller, Daniel
    Schrader, Christoph
    Krauss, Joachim K.
    Schnitzler, Alfons
    Wittstock, Matthias
    Helmers, Ann-Kristin
    Paschen, Steffen
    Kuehn, Andrea
    Skogseid, Inger Marie
    Eisner, Wilhelm
    Mueller, Joerg
    Matthies, Cordula
    Reich, Martin
    Volkmann, Jens
    Ip, Chi Wang
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [7] Prediction of Subacute Infarction in Acute Ischemic Stroke Using Baseline Multi-modal MRI and Deep Learning
    Yu Yannan
    Xie, Yuan
    Thamm, Thoralf
    Chen, Kevin T.
    Gong Enhao
    Zaharchuk, Greg
    STROKE, 2019, 50
  • [8] PREDICTING SURVIVAL OF GLIOBLASTOMAAFTER RADIOTHERAPY USING DEEP LEARNING AND NEUROIMAGING IN A MULTI-CENTRE COHORT
    Chelliah, A.
    Wood, D. A.
    Canas, L. S.
    Shuaib, H.
    Linares, C.
    Bassiouny, A.
    Luis, A.
    Young, T.
    Roman, A.
    Dragos, C.
    MacDonald, M.
    Lau, Y. H.
    Currie, S.
    Fatania, K.
    Frood, R.
    Mathew, R.
    Brock, J.
    Chandy, E.
    Tenant, S.
    Rowland-Hill, C.
    Williams, M.
    Wang, Q.
    Beaumont, E.
    Lam, T.
    Welsh, L.
    Foweraker, K.
    Lewis, J.
    Thust, S.
    Wastling, S.
    Glendenning, J.
    Brazil, L.
    Swampillai, A.
    Ourselin, S.
    Modat, M.
    Booth, T. C.
    NEURO-ONCOLOGY, 2023, 25 : 103 - 103
  • [9] Using Deep Learning for MRI to Identify Responders to Chemoradiotherapy in Rectal Cancer
    Koh, Dow-Mu
    RADIOLOGY, 2020, 296 (01) : 65 - 66
  • [10] Fall prediction in inpatients using the stratify instrument: A multi-centre study.
    Milisen, K
    Staelens, N
    Schwendimann, R
    De Paepe, L
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2006, 54 (04) : S134 - S134