Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
|
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Topic Splitting: A Hierarchical Topic Model Based on Non-Negative Matrix Factorization
    Liu, Rui
    Wang, Xingguang
    Wang, Deqing
    Zuo, Yuan
    Zhang, He
    Zheng, Xianzhu
    JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2018, 27 (04) : 479 - 496
  • [22] Topic Splitting: A Hierarchical Topic Model Based on Non-Negative Matrix Factorization
    Rui Liu
    Xingguang Wang
    Deqing Wang
    Yuan Zuo
    He Zhang
    Xianzhu Zheng
    Journal of Systems Science and Systems Engineering, 2018, 27 : 479 - 496
  • [23] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349
  • [24] Distributed geometric nonnegative matrix factorization and hierarchical alternating least squares-based nonnegative tensor factorization with the MapReduce paradigm
    Zdunek, Rafal
    Fonal, Krzysztof
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (17):
  • [25] NONNEGATIVE MATRIX FACTORIZATION WITH MATRIX EXPONENTIATION
    Lyu, Siwei
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2038 - 2041
  • [26] Incremental nonnegative matrix factorization for background modeling in surveillance video
    Bucak, Serhat S.
    Guensel, Bilge
    Guersoy, Ozan
    2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 838 - 841
  • [27] Nonnegative rank factorization of a nonnegative matrix A with A† A≥0
    Jain, SK
    Tynan, J
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01): : 83 - 95
  • [28] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [29] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382
  • [30] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510