Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
|
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] NEURAL NONNEGATIVE MATRIX FACTORIZATION FOR HIERARCHICAL MULTILAYER TOPIC MODELING
    Gao, M.
    Haddock, J.
    Molitor, D.
    Needell, D.
    Sadovnik, E.
    Will, T.
    Zhang, R.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 6 - 10
  • [2] Topic Modeling on Triage Notes With Semiorthogonal Nonnegative Matrix Factorization
    Li, Yutong
    Zhu, Ruoqing
    Qu, Annie
    Ye, Han
    Sun, Zhankun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 1609 - 1624
  • [3] Accuracy of Separable Nonnegative Matrix Factorization for Topic Extraction
    Murfi, Hendri
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2017), 2017, : 226 - 230
  • [4] UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization
    Choo, Jaegul
    Lee, Changhyun
    Reddy, Chandan K.
    Park, Haesun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 1992 - 2001
  • [5] Contrastive Topic Evolution Discovery via Nonnegative Matrix Factorization
    Li, Qianru
    Chen, Bo
    Ma, Songjun
    Fu, Luoyi
    Wang, Xinbing
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [6] Lifelong Hierarchical Topic Modeling via Non-negative Matrix Factorization
    Lin, Zhicheng
    Yan, Jiaxing
    Lei, Zhiqi
    Rao, Yanghui
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 155 - 170
  • [7] Multilayer nonnegative matrix factorization using projected gradient approaches
    Cichocki, Andrzej
    Zdunek, Rafal
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2007, 17 (06) : 431 - 446
  • [8] Local Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization
    Suh, Sangho
    Choo, Jaegul
    Lee, Joonseok
    Reddy, Chandan K.
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4944 - 4948
  • [9] Recurrent neural network for approximate nonnegative matrix factorization
    Costantini, Giovanni
    Perfetti, Renzo
    Todisco, Massimiliano
    NEUROCOMPUTING, 2014, 138 : 238 - 247
  • [10] Group Matrix Factorization for Scalable Topic Modeling
    Wang, Quan
    Cao, Zheng
    Xu, Jun
    Li, Hang
    SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 375 - 384