On the Homotopy Type of the Iterated Clique Graphs of Low Degree

被引:0
|
作者
Mauricio Islas-Gómez
Rafael Villarroel-Flores
机构
[1] Universidad Autónoma del Estado de Hidalgo,
来源
Annals of Combinatorics | 2024年 / 28卷
关键词
Iterated clique graphs; Topological combinatorics; 05C76; 05E45;
D O I
暂无
中图分类号
学科分类号
摘要
To any simple graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, the clique graph operator K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} assigns the graph K(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(G)$$\end{document}, which is the intersection graph of the maximal complete subgraphs of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. The iterated clique graphs are defined by K0(G)=G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{0}(G)=G$$\end{document} and Kn(G)=K(Kn-1(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{n}(G)=K(K^{n-1}(G))$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}. We associate topological concepts to graphs by means of the simplicial complex Cl(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Cl}(G)$$\end{document} of complete subgraphs of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. Hence, we say that the graphs G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{1}$$\end{document} and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{2}$$\end{document} are homotopic whenever Cl(G1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Cl}(G_{1})$$\end{document} and Cl(G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Cl}(G_{2})$$\end{document} are. A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} such that Kn(G)≃G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{n}(G)\simeq G$$\end{document} for all n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document} is called K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-homotopy permanent. A graph is Helly if the collection of maximal complete subgraphs of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} has the Helly property. Let G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} be a Helly graph. Escalante (1973) proved that K(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(G)$$\end{document} is Helly, and Prisner (1992) proved that G≃K(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\simeq K(G)$$\end{document}, and so Helly graphs are K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-homotopy permanent. We conjecture that if a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfies that Km(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{m}(G)$$\end{document} is Helly for some m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document}, then G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-homotopy permanent. If a connected graph has maximum degree at most four and is different from the octahedral graph, we say that it is a low degree graph. It was recently proven that all low-degree graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfy that K2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{2}(G)$$\end{document} is Helly. In this paper, we show that all low-degree graphs have the homotopy type of a wedge or circumferences, and that they are K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-homotopy permanent.
引用
收藏
页码:367 / 378
页数:11
相关论文
共 50 条
  • [1] On the Homotopy Type of the Iterated Clique Graphs of Low Degree
    Islas-Gomez, Mauricio
    Villarroel-Flores, Rafael
    [J]. ANNALS OF COMBINATORICS, 2024, 28 (02) : 367 - 378
  • [2] Equivariant collapses and the homotopy type of iterated clique graphs
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (15) : 3199 - 3207
  • [3] Posets, clique graphs and their homotopy type
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 334 - 342
  • [4] On the clique behavior of graphs of low degree
    Rafael Villarroel-Flores
    [J]. Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [5] On the clique behavior of graphs of low degree
    Villarroel-Flores, Rafael
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [6] Discrete Morse Theory and the Homotopy Type of Clique Graphs
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    [J]. ANNALS OF COMBINATORICS, 2013, 17 (04) : 743 - 754
  • [7] Discrete Morse Theory and the Homotopy Type of Clique Graphs
    F. Larrión
    M. A. Pizaña
    R. Villarroel-Flores
    [J]. Annals of Combinatorics, 2013, 17 : 743 - 754
  • [8] SELF-CLIQUE GRAPHS AND DIAMETERS OF ITERATED CLIQUE GRAPHS
    BALAKRISHNAN, R
    PAULRAJA, P
    [J]. UTILITAS MATHEMATICA, 1986, 29 : 263 - 268
  • [9] Dismantlings and iterated clique graphs
    Frías-Armenta, ME
    Neumann-Lara, V
    Pizaña, MA
    [J]. DISCRETE MATHEMATICS, 2004, 282 (1-3) : 263 - 265
  • [10] DIAMETERS OF ITERATED CLIQUE GRAPHS
    HEDMAN, B
    [J]. HADRONIC JOURNAL, 1986, 9 (06): : 273 - 276