On the clique behavior of graphs of low degree

被引:0
|
作者
Rafael Villarroel-Flores
机构
[1] Universidad Autónoma del Estado de Hidalgo,
关键词
Iterated clique graphs; Convergent graphs; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
To any simple graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, the clique graph operator K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} associates the graph K(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(G)$$\end{document} which is the intersection graph of the maximal complete subgraphs of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. The iterated clique graphs are defined by K0(G)=G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{0}(G)=G$$\end{document} and Kn(G)=K(Kn-1(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{n}(G)=K(K^{n-1}(G))$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}. If there are m<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m<n$$\end{document} such that Km(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{m}(G)$$\end{document} is isomorphic to Kn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{n}(G)$$\end{document} we say that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is convergent, otherwise, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is divergent. The first example of a divergent graph was shown by Neumann-Lara in the 1970s, and is the graph of the octahedron. In this paper, we prove that among the connected graphs with maximum degree 4, the octahedron is the only one that is divergent.
引用
收藏
相关论文
共 50 条
  • [1] On the clique behavior of graphs of low degree
    Villarroel-Flores, Rafael
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [2] On the Homotopy Type of the Iterated Clique Graphs of Low Degree
    Islas-Gomez, Mauricio
    Villarroel-Flores, Rafael
    [J]. ANNALS OF COMBINATORICS, 2024, 28 (02) : 367 - 378
  • [3] On the Homotopy Type of the Iterated Clique Graphs of Low Degree
    Mauricio Islas-Gómez
    Rafael Villarroel-Flores
    [J]. Annals of Combinatorics, 2024, 28 : 367 - 378
  • [4] Degree correlations in graphs with clique clustering
    Mann, Peter
    Smith, V. Anne
    Mitchell, John B. O.
    Dobson, Simon
    [J]. PHYSICAL REVIEW E, 2022, 105 (04)
  • [5] Clique partitions of complements of forests and bounded degree graphs
    Cavers, Michael
    Verstraete, Jacques
    [J]. DISCRETE MATHEMATICS, 2008, 308 (10) : 2011 - 2017
  • [6] On the clique behavior and Hellyness of the complements of regular graphs
    Villarroel-Flores, Rafael
    [J]. DISCRETE MATHEMATICS, 2023, 346 (02)
  • [7] ON THE CLIQUE BEHAVIOR OF GRAPHS WITH SMALL CONSTANT LINK
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    [J]. ARS COMBINATORIA, 2019, 142 : 27 - 53
  • [8] BALANCED SUBDIVISIONS OF A LARGE CLIQUE IN GRAPHS WITH HIGH AVERAGE DEGREE*
    Wang, Yan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1262 - 1274
  • [9] Reduced Clique Graphs: A Correction to "Chordal Graphs and Their Clique Graphs"
    Mayhew, Dillon
    Probert, Andrew
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [10] Coordinated graphs and clique graphs of clique-Helly perfect graphs
    Bonomo, Flavia
    Duran, Guillermo
    Groshaus, Marina
    [J]. UTILITAS MATHEMATICA, 2007, 72 : 175 - 191