Numerical study of local and global persistence in directed percolation

被引:0
|
作者
H. Hinrichsen
H.M. Koduvely
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
[2] Nöthnitzer Straße 38,undefined
[3] 01187 Dresden,undefined
[4] Germany,undefined
[5] Department of Physics of Complex Systems,undefined
[6] Weizmann Institute of Science,undefined
[7] Rehovot 76100,undefined
[8] Israel,undefined
关键词
PACS. 64.60.Ak Renormalization-group, fractal and percolation studied of phase transition - 05.40.+j Fluctuation phenomena, random processes, and Brownian motion - 05.70.Ln Nonequilibrium thermodynamics, irreversible processes;
D O I
暂无
中图分类号
学科分类号
摘要
The local persistence probability Pl(t) that a site never becomes active up to time t, and the global persistence probability Pg(t) that the deviation of the global density from its mean value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} does not change its sign up to time t are studied in a (1+1)-dimensional directed percolation process by Monte-Carlo simulations. At criticality, starting from random initial conditions, Pl(t) decays algebraically with the exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The value is found to be independent of the initial density and the microscopic details of the dynamics, suggesting \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is an universal exponent. The global persistence exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is found to be equal or larger than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. This contrasts with previously known cases where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. It is shown that in the special case of directed-bond percolation, Pl(t) can be related to a certain return probability of a directed percolation process with an active source (wet wall).
引用
收藏
页码:257 / 264
页数:7
相关论文
共 50 条
  • [21] THE PROBLEM OF DIRECTED PERCOLATION
    OBUKHOV, SP
    PHYSICA A, 1980, 101 (01): : 145 - 155
  • [22] Tricritical directed percolation
    Lübeck, S
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (01) : 193 - 221
  • [23] Backbends in directed percolation
    Roy, R
    Sarkar, A
    White, DG
    JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) : 889 - 908
  • [24] Tricritical Directed Percolation
    S. Lübeck
    Journal of Statistical Physics, 2006, 123 : 193 - 221
  • [25] DIRECTED AND DIODE PERCOLATION
    REDNER, S
    PHYSICAL REVIEW B, 1982, 25 (05): : 3242 - 3250
  • [26] Multifractality in directed percolation
    Stenull, O
    Janssen, HK
    EUROPHYSICS LETTERS, 2001, 55 (05): : 691 - 697
  • [27] ON THE SPREADING DIMENSION OF PERCOLATION AND DIRECTED PERCOLATION CLUSTERS
    VANNIMENUS, J
    NADAL, JP
    MARTIN, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06): : L351 - L356
  • [28] PINNING BY DIRECTED PERCOLATION
    TANG, LH
    LESCHHORN, H
    PHYSICAL REVIEW A, 1992, 45 (12): : R8309 - R8312
  • [29] Persistence of temperature and precipitation: from local to global anomalies
    Takalo, Jouni J.
    ANNALS OF GEOPHYSICS, 2021, 64 (06)
  • [30] Score statistics of global sequence alignment from the energy distribution of a modified directed polymer and directed percolation problem
    Sardiu, ME
    Alves, G
    Yu, YK
    PHYSICAL REVIEW E, 2005, 72 (06):