Numerical study of local and global persistence in directed percolation

被引:0
|
作者
H. Hinrichsen
H.M. Koduvely
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
[2] Nöthnitzer Straße 38,undefined
[3] 01187 Dresden,undefined
[4] Germany,undefined
[5] Department of Physics of Complex Systems,undefined
[6] Weizmann Institute of Science,undefined
[7] Rehovot 76100,undefined
[8] Israel,undefined
关键词
PACS. 64.60.Ak Renormalization-group, fractal and percolation studied of phase transition - 05.40.+j Fluctuation phenomena, random processes, and Brownian motion - 05.70.Ln Nonequilibrium thermodynamics, irreversible processes;
D O I
暂无
中图分类号
学科分类号
摘要
The local persistence probability Pl(t) that a site never becomes active up to time t, and the global persistence probability Pg(t) that the deviation of the global density from its mean value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} does not change its sign up to time t are studied in a (1+1)-dimensional directed percolation process by Monte-Carlo simulations. At criticality, starting from random initial conditions, Pl(t) decays algebraically with the exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The value is found to be independent of the initial density and the microscopic details of the dynamics, suggesting \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is an universal exponent. The global persistence exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is found to be equal or larger than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. This contrasts with previously known cases where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. It is shown that in the special case of directed-bond percolation, Pl(t) can be related to a certain return probability of a directed percolation process with an active source (wet wall).
引用
收藏
页码:257 / 264
页数:7
相关论文
共 50 条
  • [1] Numerical study of local and global persistence in directed percolation
    Hinrichsen, H
    Koduvely, HM
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (02): : 257 - 264
  • [2] Efficient numerical study of local persistence in directed percolation
    Hinrichsen, Haye
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [3] Global persistence in directed percolation
    Oerding, K
    van Wijland, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (34): : 7011 - 7021
  • [4] Local persistence in directed percolation
    Grassberger, Peter
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [5] Local persistence in the directed percolation universality class
    Fuchs, Johannes
    Schelter, Joerg
    Ginelli, Francesco
    Hinrichsen, Haye
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [6] NUMERICAL STUDY OF A FIELD-THEORY FOR DIRECTED PERCOLATION
    DICKMAN, R
    PHYSICAL REVIEW E, 1994, 50 (06) : 4404 - 4409
  • [7] Local directed percolation probability in two dimensions
    Inui, N
    Konno, N
    Komatsu, G
    Kameoka, E
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (01) : 99 - 102
  • [8] Local Directed Percolation Probability in Two Dimensions
    Inui, N.
    Konno, N.
    Komatsu, G.
    Kameoka, K.
    Journal of the Physical Society of Japan, 67 (01):
  • [9] Role of local and global geometry in entanglement percolation
    John Lapeyre, Gerald, Jr.
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [10] Crossover from directed percolation to compact directed percolation
    Mendes, J.F.F.
    Dickman, R.
    Hermann, H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (4-A pt A):