Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices

被引:0
|
作者
Froilán M. Dopico
Plamen Koev
机构
[1] Universidad Carlos III de Madrid,Instituto de Ciencias Matemáticas CSIC
[2] San Jose State University,UAM
来源
Numerische Mathematik | 2011年 / 119卷
关键词
65F05; 65F15; 15A18; 15A23; 15B99;
D O I
暂无
中图分类号
学科分类号
摘要
We present a structured perturbation theory for the LDU factorization of (row) diagonally dominant matrices and we use this theory to prove that a recent algorithm of Ye (Math Comp 77(264):2195–2230, 2008) computes the L, D and U factors of these matrices with relative errors less than 14n3u, where u is the unit roundoff and n × n is the size of the matrix. The relative errors for D are componentwise and for L and U are normwise with respect the “max norm” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|A\|_M = \max_{ij} |a_{ij}|}$$\end{document}. These error bounds guarantee that for any diagonally dominant matrix A we can compute accurately its singular value decomposition and the solution of the linear system Ax = b for most vectors b, independently of the magnitude of the traditional condition number of A and in O(n3) flops.
引用
收藏
页码:337 / 371
页数:34
相关论文
共 50 条
  • [21] Block LU factorization is stable for block matrices whose inverses are block diagonally dominant
    George A.
    Ikramov K.D.
    Journal of Mathematical Sciences, 2005, 127 (3) : 1962 - 1968
  • [22] Quasi-LDU factorization of nonsingular totally nonpositive matrices
    Canto, Rafael
    Ricarte, Beatriz
    Urbano, Ana M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 836 - 851
  • [23] Generalized doubly diagonally dominant matrices
    Huang, TZ
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (07) : 863 - 870
  • [24] A note on preconditional diagonally dominant matrices
    Ying, WL
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) : 239 - 243
  • [25] CALCULATING EIGENVECTORS OF DIAGONALLY DOMINANT MATRICES
    BLEVINS, MM
    STEWART, GW
    JOURNAL OF THE ACM, 1974, 21 (02) : 261 - 271
  • [26] On α-locally doubly diagonally dominant matrices
    Wang, Lei-Lei
    Xi, Bo-Yan
    Qi, Feng
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (02): : 163 - 172
  • [27] Notes on matrices with diagonally dominant properties
    Farid, F. O.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2793 - 2812
  • [28] Stochastic preconditioning for diagonally dominant matrices
    Qian, Haifeng
    Sapatnekar, Sachin S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1178 - 1204
  • [29] A NOTE ON GENERALIZED DIAGONALLY DOMINANT MATRICES
    HUANG, TZ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 225 : 237 - 242
  • [30] ON α-LOCALLY DOUBLY DIAGONALLY DOMINANT MATRICES
    Wang, Lei-Lei
    Xi, Bo-Yan
    Qi, Feng
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (02): : 163 - 172