Developing CRS iterative methods for periodic Sylvester matrix equation

被引:0
|
作者
Linjie Chen
Changfeng Ma
机构
[1] Fujian Normal University,College of Mathematics and Informatics
关键词
Conjugate residual squared; Iterative method; Periodic Sylvester matrix equation; Kronecker product; Vectorization operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by applying Kronecker product and vectorization operator, we extend two mathematical equivalent forms of the conjugate residual squared (CRS) method to solve the periodic Sylvester matrix equation AjXjBj+CjXj+1Dj=Ejfor j=1,2,…,λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} A_{j} X_{j} B_{j} + C_{j} X_{j+1} D_{j} = E_{j} \quad \text{for } j=1,2, \ldots ,\lambda . \end{aligned}$$ \end{document} We give some numerical examples to compare the accuracy and efficiency of the matrix CRS iterative methods with other methods in the literature. Numerical results validate that the proposed methods are superior to some existing methods and that equivalent mathematical methods can show different numerical performance.
引用
收藏
相关论文
共 50 条
  • [31] Modified CGLS Iterative Algorithm for Solving the Generalized Sylvester-Conjugate Matrix Equation
    Song, Caiqin
    Wang, Qing-Wen
    FILOMAT, 2020, 34 (04) : 1329 - 1346
  • [32] New proof of the gradient-based iterative algorithm for the Sylvester conjugate matrix equation
    Zhang, Huamin
    Yin, Hongcai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 3260 - 3270
  • [33] Two iterative algorithms for the reflexive and Hermitian reflexive solutions of the generalized Sylvester matrix equation
    Ramadan, Mohamed A.
    El-Danaf, Talaat S.
    Bayoumi, Ahmed M. E.
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (03) : 483 - 492
  • [34] On iterative methods for the quadratic matrix equation with M-matrix
    Yu, Bo
    Dong, Ning
    Tang, Qiong
    Wen, Feng-Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3303 - 3310
  • [35] The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations
    Xie, Ya-Jun
    Ma, Chang-Feng
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (16) : 4895 - 4908
  • [36] On the solution of the fuzzy Sylvester matrix equation
    Salkuyeh, Davod Khojasteh
    SOFT COMPUTING, 2011, 15 (05) : 953 - 961
  • [37] Fully fuzzy Sylvester matrix equation
    Dookhitram, Kumar
    Lollchund, Roddy
    Tripathi, Rakesh Kumar
    Bhuruth, Muddun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (05) : 2199 - 2211
  • [38] The solution of fuzzy Sylvester matrix equation
    Qixiang He
    Liangshao Hou
    Jieyong Zhou
    Soft Computing, 2018, 22 : 6515 - 6523
  • [39] ON SOLUTION OF MODIFIED MATRIX SYLVESTER EQUATION
    Aliev, F. A.
    Larin, V. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 549 - 553
  • [40] The polynomial solution to the Sylvester matrix equation
    Hu, Qingxi
    Cheng, Daizhan
    APPLIED MATHEMATICS LETTERS, 2006, 19 (09) : 859 - 864