Developing CRS iterative methods for periodic Sylvester matrix equation

被引:0
|
作者
Linjie Chen
Changfeng Ma
机构
[1] Fujian Normal University,College of Mathematics and Informatics
关键词
Conjugate residual squared; Iterative method; Periodic Sylvester matrix equation; Kronecker product; Vectorization operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by applying Kronecker product and vectorization operator, we extend two mathematical equivalent forms of the conjugate residual squared (CRS) method to solve the periodic Sylvester matrix equation AjXjBj+CjXj+1Dj=Ejfor j=1,2,…,λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} A_{j} X_{j} B_{j} + C_{j} X_{j+1} D_{j} = E_{j} \quad \text{for } j=1,2, \ldots ,\lambda . \end{aligned}$$ \end{document} We give some numerical examples to compare the accuracy and efficiency of the matrix CRS iterative methods with other methods in the literature. Numerical results validate that the proposed methods are superior to some existing methods and that equivalent mathematical methods can show different numerical performance.
引用
收藏
相关论文
共 50 条
  • [1] Developing CRS iterative methods for periodic Sylvester matrix equation
    Chen, Linjie
    Ma, Changfeng
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations
    Hajarian, Masoud
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10): : 3328 - 3341
  • [3] AN ITERATIVE ALGORITHM FOR PERIODIC SYLVESTER MATRIX EQUATIONS
    Lv, Lingling
    Zhang, Zhe
    Zhang, Lei
    Wang, Weishu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (01) : 413 - 425
  • [4] On Iterative Solutions of Periodic Sylvester Matrix Equations
    Chen, Zebin
    Chen, Xuesong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 180 - 185
  • [6] A Parameter Iterative Method for the Sylvester Matrix Equation
    Luo, Wei -Hua
    Wu, Kai-Teng
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 : 259 - 263
  • [7] Iterative methods to solve the constrained Sylvester equation
    Yu, Siting
    Peng, Jingjing
    Tang, Zengao
    Peng, Zhenyun
    AIMS MATHEMATICS, 2023, 8 (09): : 21531 - 21553
  • [8] Finite iterative solutions to periodic Sylvester matrix equations
    Lv, Lingling
    Zhang, Zhe
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05): : 2358 - 2370
  • [9] A matrix CRS iterative method for solving a class of coupled Sylvester-transpose matrix equations
    Chen, Cai-Rong
    Ma, Chang-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1223 - 1231
  • [10] Iterative procedure for solution of Sylvester generalized matrix equation
    Nikitin, AV
    Yasinskii, VK
    CYBERNETICS AND SYSTEMS ANALYSIS, 2000, 36 (03) : 472 - 474