On the gonality sequence of an algebraic curve

被引:0
|
作者
H. Lange
G. Martens
机构
[1] Universität Erlangen-Nürnberg,Department Mathematik
来源
Manuscripta Mathematica | 2012年 / 137卷
关键词
Primary: 14H45; Secondary: 14H51; 32L10;
D O I
暂无
中图分类号
学科分类号
摘要
For any smooth irreducible projective curve X, the gonality sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{d_r \;| \; r \in \mathbb N\}}$$\end{document} is a strictly increasing sequence of positive integer invariants of X. In most known cases dr+1 is not much bigger than dr. In our terminology this means the numbers dr satisfy the slope inequality. It is the aim of this paper to study cases when this is not true. We give examples for this of extremal curves in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb P}^r}$$\end{document}, for curves on a general K3-surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb P}^r}$$\end{document} and for complete intersections in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb P}^3}$$\end{document}.
引用
收藏
页码:457 / 473
页数:16
相关论文
共 50 条
  • [1] On the gonality sequence of an algebraic curve
    Lange, H.
    Martens, G.
    MANUSCRIPTA MATHEMATICA, 2012, 137 (3-4) : 457 - 473
  • [2] The gonality sequence of a curve with an involution
    Kato, Takao
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2014, 103 (02) : 111 - 116
  • [3] The gonality sequence of a curve with an involution
    Takao Kato
    Gerriet Martens
    Archiv der Mathematik, 2014, 103 : 111 - 116
  • [4] ON THE GONALITY OF AN ALGEBRAIC CURVE AND ITS ABELIAN AUTOMORPHISM GROUPS
    Lu, Xin
    Tan, Sheng-Li
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (04) : 1509 - 1523
  • [5] Gonality of Algebraic Curves and Graphs
    Caporaso, Lucia
    ALGEBRAIC AND COMPLEX GEOMETRY, 2014, 71 : 77 - 108
  • [6] The gonality sequence of covering curves
    Keem, Changho
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2015, 105 (01) : 33 - 43
  • [7] The separating gonality of a separating real curve
    Marc Coppens
    Monatshefte für Mathematik, 2013, 170 : 1 - 10
  • [8] The separating gonality of a separating real curve
    Coppens, Marc
    MONATSHEFTE FUR MATHEMATIK, 2013, 170 (01): : 1 - 10
  • [9] The gonality sequence of covering curves
    Changho Keem
    Gerriet Martens
    Archiv der Mathematik, 2015, 105 : 33 - 43
  • [10] On the gonality sequence of smooth curves
    Ballico, Edoardo
    ARCHIV DER MATHEMATIK, 2012, 99 (01) : 25 - 31