The relative Whitney trick and its applications

被引:0
|
作者
Christopher W. Davis
Patrick Orson
JungHwan Park
机构
[1] University of Wisconsin–Eau Claire,Department of Mathematics
[2] Max-Planck-Institut für Mathematik,Department of Mathematical Sciences
[3] KAIST,undefined
来源
Selecta Mathematica | 2022年 / 28卷
关键词
Link concordance; Whitney trick; Whitney tower; 57K10; 57N70;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a geometric operation, which we call the relative Whitney trick, that removes a single double point between properly immersed surfaces in a 4-manifold with boundary.Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to a link that is topologically slice in a contractible topological 4-manifold. We further prove that any link in a homology sphere is order k Whitney tower concordant to a link in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} for all k. Finally, we explore the minimum Gordian distance from a link in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} to a homotopically trivial link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make explicit computations for 3-component links and establish bounds in general.
引用
收藏
相关论文
共 50 条