共 50 条
The relative Whitney trick and its applications
被引:0
|作者:
Christopher W. Davis
Patrick Orson
JungHwan Park
机构:
[1] University of Wisconsin–Eau Claire,Department of Mathematics
[2] Max-Planck-Institut für Mathematik,Department of Mathematical Sciences
[3] KAIST,undefined
来源:
关键词:
Link concordance;
Whitney trick;
Whitney tower;
57K10;
57N70;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce a geometric operation, which we call the relative Whitney trick, that removes a single double point between properly immersed surfaces in a 4-manifold with boundary.Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to a link that is topologically slice in a contractible topological 4-manifold. We further prove that any link in a homology sphere is order k Whitney tower concordant to a link in S3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^3$$\end{document} for all k. Finally, we explore the minimum Gordian distance from a link in S3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^3$$\end{document} to a homotopically trivial link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make explicit computations for 3-component links and establish bounds in general.
引用
收藏
相关论文