The relative Whitney trick and its applications

被引:0
|
作者
Christopher W. Davis
Patrick Orson
JungHwan Park
机构
[1] University of Wisconsin–Eau Claire,Department of Mathematics
[2] Max-Planck-Institut für Mathematik,Department of Mathematical Sciences
[3] KAIST,undefined
来源
Selecta Mathematica | 2022年 / 28卷
关键词
Link concordance; Whitney trick; Whitney tower; 57K10; 57N70;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a geometric operation, which we call the relative Whitney trick, that removes a single double point between properly immersed surfaces in a 4-manifold with boundary.Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to a link that is topologically slice in a contractible topological 4-manifold. We further prove that any link in a homology sphere is order k Whitney tower concordant to a link in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} for all k. Finally, we explore the minimum Gordian distance from a link in S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} to a homotopically trivial link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make explicit computations for 3-component links and establish bounds in general.
引用
收藏
相关论文
共 50 条
  • [1] The relative Whitney trick and its applications
    Davis, Christopher W.
    Orson, Patrick
    Park, JungHwan
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [2] The Whitney Trick
    Lackenby, M
    TOPOLOGY AND ITS APPLICATIONS, 1996, 71 (02) : 115 - 118
  • [3] The Legendrian Whitney trick
    Casals, Roger
    Pancholi, Dishant M.
    Presas, Francisco
    GEOMETRY & TOPOLOGY, 2021, 25 (06) : 3229 - 3256
  • [4] Elements of the Lagrangian Whitney trick
    Byun, Y
    Joe, D
    Ryu, JS
    Yi, S
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 435 - 453
  • [5] Elements of the Lagrangian Whitney trick
    Yanghyun Byun
    Dosang Joe
    Jeong Seog Ryu
    Seunghun Yi
    Mathematische Zeitschrift, 2003, 245 : 435 - 453
  • [6] THE WHITNEY TRICK IN DIMENSION 4
    VENEMA, GA
    RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (03) : 193 - 195
  • [7] A triple-point Whitney trick
    Melikhov, Sergey A.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2020, 12 (04) : 1041 - 1046
  • [8] RELATIVE WHITNEY GERMS
    KUSHNER, L
    HOUSTON JOURNAL OF MATHEMATICS, 1991, 17 (02): : 201 - 205
  • [9] A ONE-DIMENSIONAL WHITNEY TRICK AND KURATOWSKI GRAPH PLANARITY CRITERION
    SARKARIA, KS
    ISRAEL JOURNAL OF MATHEMATICS, 1991, 73 (01) : 79 - 89
  • [10] Relative convexity and its applications
    Niculescu, Constantin P.
    Roventa, Ionel
    AEQUATIONES MATHEMATICAE, 2015, 89 (05) : 1389 - 1400