The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al–Si alloys

被引:1
|
作者
S. Farahany
A. Ourdjini
M. H. Idris
机构
[1] Universiti Teknologi Malaysia,Materials Engineering Department, Faculty of Mechanical Engineering
关键词
Thermal analysis; Refiner; Modifier; Al–Si alloy; Solidification;
D O I
暂无
中图分类号
学科分类号
摘要
Bismuth, antimony and strontium concentrations were optimised to alter the eutectic Al–Si phase in a commercial Al–Si–Cu–Mg alloy by way of computer-aided cooling curve thermal analysis. The results show that the eutectic growth temperature shifted to lower temperatures for all three inoculants. However, addition of Sr resulted in more depression of growth temperature compared with Bi and Sb. No further significant changes were observed with increasing the concentrations to more than 1, 0.5 and 0.04 wt% of Bi, Sb and Sr, respectively. The recalescence of these concentrations, meanwhile, showed a significant increase of magnitude. A good correlation was found between the results of thermal and microstructural analysis. For Bi and Sb, the eutectic depression temperature can be used as an individual criterion to gauge optimal levels of content in the refinement of Si, whereas for Sr, both depression temperature and recalescence magnitude must be considered. Based on the observed depression in eutectic growth temperature and recalescence, it can be concluded that the optimal concentrations to refine the eutectic Al–Si phase with Bi and Sb and to modify it with Sr at the given solidification conditions were 1, 0.5 and 0.04 wt%, respectively.
引用
收藏
页码:105 / 111
页数:6
相关论文
共 47 条
  • [21] Effect of Cooling Rate on the Microstructure and Solidification Characteristics of Al–20%Mg2Si In Situ Composites Using Computer-Aided Thermal Analysis Technique
    S. Ashkvary
    S. G. Shabestari
    F. Yavari
    International Journal of Metalcasting, 2023, 17 : 322 - 333
  • [22] Determining the solidification characteristics of Manganese bronze (MAB) alloy using computer-aided cooling curve analysis
    Pranesh
    Anas, Sheikh Mohammed
    Johnson, Sheron
    Jose, Robin
    Sachin, B.
    Govindarajan, Sumanth
    Vijayan, Vijeesh
    Karinka, Shashikantha
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 2095 - 2101
  • [23] Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique
    Ghoncheh, M. H.
    Shabestari, S. G.
    Abbasi, M. H.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (03) : 1253 - 1261
  • [24] Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique
    M. H. Ghoncheh
    S. G. Shabestari
    M. H. Abbasi
    Journal of Thermal Analysis and Calorimetry, 2014, 117 : 1253 - 1261
  • [25] Effect of Cooling Rate on the Microstructure and Solidification Characteristics of Al-20%Mg2Si In Situ Composites Using Computer-Aided Thermal Analysis Technique
    Ashkvary, S.
    Shabestari, S. G.
    Yavari, F.
    INTERNATIONAL JOURNAL OF METALCASTING, 2023, 17 (01) : 322 - 333
  • [26] Assessment of Eutectic Modification Level in Al-Si Alloys Via Thermal Analysis
    Abdelrahman, Maiada S.
    Abdu, Mahmoud T.
    Khalifa, Waleed
    LIGHT METALS 2017, 2017, : 885 - 895
  • [27] Cooling curve thermal analysis of Al-Mg2Si-Cu-xSr composite
    Farahany, Saeed
    Nordin, Nur Azmah
    Ghandvar, Hamidreza
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (03) : 1109 - 1122
  • [28] Cooling curve thermal analysis of Al–Mg2Si–Cu–xSr composite
    Saeed Farahany
    Nur Azmah Nordin
    Hamidreza Ghandvar
    Journal of Thermal Analysis and Calorimetry, 2020, 141 : 1109 - 1122
  • [29] A Computer Aided Cooling Curve Analysis method to study phase change materials for thermal energy storage applications
    Sudheer, R.
    Prabhu, K. N.
    MATERIALS & DESIGN, 2016, 95 : 198 - 203
  • [30] Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis
    F. Yavari
    S. G. Shabestari
    Journal of Thermal Analysis and Calorimetry, 2017, 129 : 655 - 662