Well-posedness and regularity for an Euler–Bernoulli plate with variable coefficients and boundary control and observation

被引:4
|
作者
Bao-Zhu Guo
Zhi-Xiong Zhang
机构
[1] Academy of Mathematics and Systems Science,School of Computational and Applied Mathematics
[2] Academia Sinica,undefined
[3] University of the Witwatersrand,undefined
[4] Graduate School of the Chinese Academy of Sciences,undefined
关键词
Euler-Bernoulli plate; Well-posed and regular system; Boundary control and observation;
D O I
暂无
中图分类号
学科分类号
摘要
The open loop system of an Euler–Bernoulli plate with variable coefficients and partial boundary Neumann control and collocated observation is considered. Using the geometric multiplier method on Riemannian manifolds, we show that the system is well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. Moreover, we determine that the feedthrough operator of this system is zero. The result implies in particular that the exact controllability of the open-loop system is equivalent to the exponential stability of the closed-loop system under proportional output feedback.
引用
收藏
页码:337 / 360
页数:23
相关论文
共 50 条
  • [31] Regularity of an Euler-Bernoulli Equation with Neumann Control and Collocated Observation
    Bao-Zhu Guo
    Zhi-Chao Shao
    [J]. Journal of Dynamical and Control Systems, 2006, 12 : 405 - 418
  • [32] Regularity of an Euler-Bernoulli equation with Neumann control and collocated observation
    Guo, Bao-Zhu
    Shao, Zhi-Chao
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2006, 12 (03) : 405 - 418
  • [33] Gevrey well-posedness for 3-evolution equations with variable coefficients
    Arias Jr, Alexandre
    Ascanelli, Alessia
    Cappiello, Marco
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (01) : 1 - 31
  • [34] LOCAL WELL-POSEDNESS IN LOW REGULARITY OF THE MKDV EQUATION WITH PERIODIC BOUNDARY CONDITION
    Nakanishi, Kenji
    Takaoka, Hideo
    Tsutsumi, Yoshio
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1635 - 1654
  • [35] WELL-POSEDNESS AND EXACT CONTROLLABILITY OF FOURTH ORDER SCHRODINGER EQUATION WITH BOUNDARY CONTROL AND COLLOCATED OBSERVATION
    Wen, Ruili
    Chai, Shugen
    Guo, Bao-Zhu
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 365 - 396
  • [36] The Well-Posedness and Regularity of a Batch Arrival Queue
    Li, Zhi-Ying
    Wang, Wen-Long
    [J]. PROCEEDINGS OF THE 3RD ANNUAL INTERNATIONAL CONFERENCE ON MANAGEMENT, ECONOMICS AND SOCIAL DEVELOPMENT (ICMESD 17), 2017, 21 : 488 - 494
  • [37] Local well-posedness for the homogeneous Euler equations
    Zhong, Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3829 - 3848
  • [38] On the global well-posedness for the axisymmetric Euler equations
    Abidi, Hammadi
    Hmidi, Taoufik
    Keraani, Sahbi
    [J]. MATHEMATISCHE ANNALEN, 2010, 347 (01) : 15 - 41
  • [39] THE WELL-POSEDNESS AND REGULARITY OF A ROTATING BLADES EQUATION
    Shen, Lin
    Wang, Shu
    Wang, Yongxin
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 691 - 719
  • [40] On the global well-posedness for the axisymmetric Euler equations
    Hammadi Abidi
    Taoufik Hmidi
    Sahbi Keraani
    [J]. Mathematische Annalen, 2010, 347 : 15 - 41